首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyathus stercoreus (Schw.) de Toni NRRL 6473, isolated from aged and fragmented cattle dung collected from a Michigan pasture, effected substantial losses in lignin (45%) from wheat straw during a 62-day fermentation (25°C). The basidiomycete also improved wheat straw digestibility by freeing α-cellulose for enzymatic hydrolysis to glucose (230 mg of glucose per 1,000 mg of fermented residue). The rationale for selecting C. stercoreus in attempting to biologically modify the lignin and cellulose components in wheat straw or other gramineous agricultural residues was based on the expectation that this organism is ecologically specialized to enzymatically attack the substructures of native lignins in grasses.  相似文献   

2.
A pilot plant (IBUS) consisting of three reactors was used for hydrothermal treatment of wheat straw (120-150 kg/h) aiming at co-production of bioethanol (from sugars) and electricity (from lignin). The first reactor step was pre-soaking at 80 degrees C, the second extraction of hemicellulose at 170-180 degrees C and the third improvement of the enzymatic cellulose convertibility at 195 degrees C. Water added to the third reactor passed countercurrent to straw. The highest water addition (600 kg/h) gave the highest hemicellulose recovery (83%). With no water addition xylose degradation occurred resulting in low hemicellulose recovery (33%) but also in high glucose yield in the enzymatic hydrolysis (72 g/100g glucose in straw). Under these conditions most of the lignin was retained in the fibre fraction, which resulted in a lignin rich residue with high combustion energy (up to 31 MJ/kg) after enzymatic hydrolysis of cellulose and hemicellulose.  相似文献   

3.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

4.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

5.
The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing woody biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively. Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen??one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed at 30°C have a lower density and compression strength and a tendency to expand in length after the pelletizing process compared to pellets pressed at 100°C. At low temperatures, surface extractives have a lubricating effect and reduce the friction in the press channel of a pellet mill while no such effect is observed at elevated temperatures. Fuel pellets made from extracted wheat straw have a slightly higher compression strength which might be explained by a better interparticle adhesion in the absence of hydrophobic surface waxes.  相似文献   

6.
Agricultural by-products such as wheat straw are attractive feedstocks for the production of second-generation bioethanol due to their high abundance. However, the presence of lignin in these lignocellulosic materials hinders the enzymatic hydrolysis of cellulose. The purposes of this work are to study the ability of a laccase-mediator system to remove lignin improving saccharification, as a pretreatment of wheat straw, and to analyze the chemical modifications produced in the remaining lignin moiety. Up to 48 % lignin removal from ground wheat straw was attained by pretreatment with Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) as mediator, followed by alkaline peroxide extraction. The lignin removal directly correlated with increases (~60 %) in glucose yields after enzymatic saccharification. The pretreatment using laccase alone (without mediator) removed up to 18 % of lignin from wheat straw. Substantial lignin removal (37 %) was also produced when the enzyme-mediator pretreatment was not combined with the alkaline peroxide extraction. Two-dimensional nuclear magnetic resonance (2D NMR) analysis of the whole pretreated wheat straw material swollen in dimethylsulfoxide-d 6 revealed modifications of the lignin polymer, including the lower number of aliphatic side chains involved in main β-O-4′ and β-5′ inter-unit linkages per aromatic lignin unit. Simultaneously, the removal of p-hydroxyphenyl, guaiacyl, and syringyl lignin units and of p-coumaric and ferulic acids, as well as a moderate decrease of tricin units, was observed without a substantial change in the wood polysaccharide signals. Especially noteworthy was the formation of Cα-oxidized lignin units during the enzymatic treatment.  相似文献   

7.

Background

The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments.

Results

The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140°C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140°C. Surface response models revealed significantly correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin.

Conclusions

Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T ≤ 140°C, time ≤ 10 min). Alkaline pretreatments generally induced higher enzymatic glucose and xylose release and did so at lower pretreatment temperatures than required with acidic pretreatments.  相似文献   

8.
《Process Biochemistry》2010,45(7):1181-1186
The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5L and Novozym 188. While pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69% and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw with only minor losses of monosaccharides and production of only low amounts of inhibitors. Type of catalyst and pH indeed influenced the monosaccharide yields and lignin removal from wheat straw, and need more attention in the choice of pretreatment strategy.  相似文献   

9.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

10.
Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195 degrees C with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde. acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products from hemicellulose and lignin.  相似文献   

11.
Wan C  Li Y 《Bioresource technology》2011,102(20):9788-9793
Exhaustive hot water extraction (HWE) and liquid hot water (LHW) pretreatment were evaluated for their effects on degradation of biomass feedstocks (i.e., corn stover, wheat straw, and soybean straw) by Ceriporiopsis subvermispora. HWE (85 °C for 10 min) partially removed water soluble extractives and subsequently improved fungal degradation on wheat straw while it had little or no effect on the fungal degradation of corn stover and soybean straw. In contrast, LHW pretreatment at 170 °C for 3 min improved the fungal degradation of soybean straw; thus, lignin removal of 36.70% and glucose yield of 64.25% were obtained from the combined LHW and fungal pretreatment. However, corn stover, which was effectively degraded by fungal pretreatment alone, was less affected by this combined pretreatment. Our results indicated that a HWE or LHW pretreatment conducted under mild conditions worked synergistically with fungal degradation for some recalcitrant feedstocks.  相似文献   

12.
Mild alkaline/oxidative pretreatment of wheat straw   总被引:4,自引:0,他引:4  
A new mild alkaline/oxidative pretreatment of wheat straw prior to enzymic hydrolysis was carried out. It consists of a first alkaline (1% NaOH for 24 h) step, which mainly solubilises hemicellullose and renders the material more accessible to further chemical attack, and a second alkaline/oxidative step (1% NaOH and 0·3% H2O2 for 24 h), which solubilises and oxidises lignin to minor polluting compounds. The entire process was carried out at low temperature (25–40°C) using a low concentration of chemicals, resulting in a relatively low cost and waste liquors containing only trace amounts of dangerous pollutants derived from lignin. Recovery of cellulose after the double pretreatment reached 90% of that contained in the starting material, with a concomitant 81% degradation of lignin. The action of a commercial cellulase on the cellulose obtained produced a syrup with a high concentration of reducing sugars (220 mg/ml), of which a large percentage was glucose.  相似文献   

13.
The wet oxidation process of wheat straw has been studied as a pretreatment method to attain our main goal: To break down cellulose to glucose enzymatic, and secondly, to dissolve hemicellulose (e.g., for fermentation) without producing microbial inhibitors. Wet oxidation combined with base addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hydrolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170 degrees C, 5 to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known inhibitors of microbial growth when other pretreatment systems have been applied, were not observed following the wet oxidation treatment. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
A variety of methods for feed development have been introduced during last few years. Bioprocessed agricultural residues may prove a better alternative to provide animal feed. For the purpose, some white rot fungi were allowed to degrade wheat straw up to 30 days under solid state conditions. Several parameters including loss in total organic matter, ligninolysis, in vitro digestibility of wheat straw and estimation of different antioxidant activities were studied. All the fungi were able to degrade lignin and enhance the in vitro digestibility. Among all the tested fungi, Phlebia brevispora degraded maximum lignin (30.6%) and enhanced the digestibility from 172 to 287 g/kg. Different antioxidant properties of fungal degraded wheat straw were higher as compared to the uninoculated control straw. Phlebia floridensis found to be more efficient organism in terms of higher antioxidant activity (70.8%) and total phenolic content (9.8 mg/ml). Thus, bioprocessing of the wheat straw with the help of these organisms seems to be a better approach for providing the animal feed in terms of enhanced digestibility, higher protein content, higher antioxidant activity and availability of biomass.  相似文献   

15.
This study was conducted to investigate changes in in vitro dry matter digestibility (IVDMD) and cell wall constituent degradation in wheat straw treated with 3 strains of the fungus Pleurotus tuber-regium (PT). The incubation of wheat straw for 30 days at 28 degrees C improved IVDMD from 30.3% (UWS-untreated wheat straw) to 47.1% for strain PT1, to 48.5% for PT4, and was unchanged IVDMD-29.9% -for PT5. The growth of fungi was accompanied by the dry matter loss of wheat straw: 31.5% for PT1, 20.9% for PT4, and 4.8% for PT5. Fungal treatment was characterized by increased crude protein and ash contents (%) in all fungi-treated straws and reduced hemicellulose and lignin content. It is evident that enzymes of all 3 PT strains preferentially degraded hemicellulose and lignin over cellulose. Wheat straw treated with PT1 (TWS-PT1), PT4 (TWS-PT4), and PT5 (TWS-PT5) and barley (80% : 20%) were used as the experimental diets at the fermentation in the artificial rumen. UWS with barley (80% : 20%) served as the control diet. The fermentation of experimental diets was accompanied with increased IVDMD and a very low degree of hemicellulose degradation. Total gas and methane productions were similar in all diets. Moreover, total volatile fatty acid (VFA) production (mmol day(-1)), mol % of acetate, propionate, butyrate, isobutyrate, and isovalerate were not influenced during the fermentation of experimental diets. From the stoichiometric relations, production, utilization, and recovery of metabolic hydrogen and organic matter fermented were unchanged. Only the recovery of metabolic hydrogen in TWS-PT5 was significantly increased in comparison to control diet. Total microbial production showed the tendency of lower values in experimental diets, and it was accompanied with a significant decrease of ammonia nitrogen (mg L(-1)). Finally the results showed that the strains of Pleurotus tuber-regium can improve the quality of wheat straw, but the loss of dry matter (DM) (mainly hemicellulose) limits the effective utilization of fungi-treated straw in ruminant digestion.  相似文献   

16.
Mycelial growth rates are presented for 11 strains of Lentinula edodes and six strains of Lentinula boryana cultivated on solid media: derived from malt extract (MEA); malt yeast extract (YMEA); and, YMEA plus soluble lignin derivatives (YMEA+WSLD). The results were compared with data for mycelial growth rates, of the same strains cultivated on substrates derived from wheat straw treated at different temperatures (50, 65, 75 and autoclaving at 121 degrees C). In general, the addition of WSLD significantly reduced mycelial growth rates in both species. The greatest mycelial growth rate was obtained on sterilized straw at 121 degrees C for the majority of strains. However, this growth was not significantly different from that obtained at 75 degrees C. L. edodes showed greater growth rates than L. boryana. The feasibility of using estimates of mycelial growth rate on YMEA and YMEA+WSLD are discussed as possible indicators of a strain's potential for mycelial growth on substrates derived from wheat straw.  相似文献   

17.
Kumar A  Gaind S  Nain L 《Biodegradation》2008,19(3):395-402
Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th4), Scytalidium thermophilum (Th5), and Humicola sp. (Th10). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.  相似文献   

18.
Pleurotus pulmonarius produced the strongest degradation of lignin during solid-state fermentation of [(sup14)C]lignin wheat straw with different fungi. A manganese-oxidizing peroxidase seemed to be involved in lignin attack, since the addition of Mn(sup2+) to the culture increased lignin mineralization by ca. 125%. This enzyme was purified and characterized from both solid-state fermentation and liquid cultures.  相似文献   

19.
Summary 74 Basidiomycetes have been tested for ligninolytic capability on (14C)lignin-labelled wheat straw. Fifteen strains were selected and rested more accurately for ligninolytic activity and the capacity to degrade wheat straw. The asymptote, inflexion point and degradation rate were determined using a model approach. The fungi exhibited very different responses with respect to lignin biodegradation: high asymptote for Pleurotus ostreatus (77%), low inflexion points for Sporotrichum pulverulentum Nov. (6.1 days) and Pycnoporus spp. (2.7 to 4.7 days) with high and slow degradation rates, respectively (0.91% and 0.45% of 14CO2 release/day). Degradation values for (14C)whole-labelled wheat straw exhibited less variation. Finally, the strains Pleurotus ostreatus, Dichomitus squalens and Bjerkandera adusta showed the highest selectivity of lignin removal.  相似文献   

20.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号