首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temporal depletion and accumulation of polyols were investigated in the fungus Geotrichum candidum. The major intracellular polyols were tentatively identified by paper chromatography as mannitol and arabitol. Inositol was also present in small quantities, and trehalose was also detected in appreciable concentrations.Germination and vegetative growth depended on the type and concentration of the sole exogenous carbon source. Mannitol occurred in arthrospores at 9.4% of the dry weight after several days growth in 2% (w/v) glucose solid medium, and became depleted during germination and vegetative growth in liquid medium containing 2% (w/v) glucose, 2% (w/v) sodium acetate or 25% (w/v) glucose as sole carbon source. This hexitol latter accumulated during arthrosporulation. The depletion and accumulation of ethanol-soluble carbohydrate believed to be primarily trehalose was temporally similar to that of mannitol. Arabitol accumulated intracellularly during germination and vegetative growth in sodium acetate medium and 25% glucose medium. This pentitol was not detected intracellularly at any culture age during growth in 2% glucose medium.Prolonged incubation of the culture in 25% glucose medium after stationary phase was reached resulted in the gradual disappearance of arabitol from the arthrospores simultaneously with an increase in intracellular mannitol. In comparison, ethanol-soluble carbohydrate did not change with prolonged incubation in this medium.  相似文献   

2.
The biocontrol agent Candida sake was cultured on either an unmodified molasses-based medium (water activity, a(w) 0.996) or on water stressed media produced by the addition of glycerol, glucose, NaCl, sorbitol, or proline to 0.98, and 0.96 a(w) for 24, 48, and 72 h, to study their impact on subsequent cell viability, and on concentrations of endogenous sugars (trehalose and glucose) and polyols (glycerol, erythritol, arabitol, and mannitol). The viability of cells of different ages cultured on these media was evaluated on NYDA medium with freely available water (a(w) 0.995), and on medium modified with polyethylene glycol to a(w) 0.95. Regardless of solute used, viable counts of cells grown on molasses-based medium (a(w) 0.98) were equal to or higher than those obtained from the medium with water freely available. The amino acid proline stimulated growth at 10% concentration. In contrast, water stress induced by addition of NaCl, glucose, or sorbitol at a(w) 0.96 caused a significant reduction in viable counts. Older cultures were more resistant to water stress. Glycerol and arabitol were the main solutes accumulated by C. sake cells in response to lowered a(w). Intracellular concentration of these polyols depended more on the solute used to adjust the a(w) than on the a(w) itself. Candida sake was more resistant to water stress with higher intracellular concentration of glycerol and erythritol.  相似文献   

3.
The growth and conidial physiology of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus were studied under different conditions. The effects of culture age (up to 120 days), temperature (5 to 35(deg)C), and pH (2.9 to 11.1) were determined. Growth was optimal at pH 5 to 8 for each isolate and between 20 and 35(deg)C, depending on the isolate. The predominant polyol in conidia was mannitol, with up to 39, 134, and 61 mg g of conidia(sup-1) for B. bassiana, M. anisopliae, and P. farinosus, respectively. Conidia of M. anisopliae contained relatively small amounts of lower-molecular-weight polyols and trehalose (less than 25 mg g(sup-1) in total) in all treatments. Conidia of B. bassiana and P. farinosus contained up to 30, 32, and 25 mg of glycerol, erythritol, and trehalose, respectively, g(sup-1), depending on the treatment. Conidia of P. farinosus contained unusually high amounts of glycerol and erythritol at pH 2.9. The apparent effect of pH on gene expression is discussed in relation to the induction of a water stress response. To our knowledge, this is the first report of polyols and trehalose in fungal propagules produced over a range of temperature or pH. Some conditions and harvesting times were associated with an apparent inhibition of synthesis or accumulation of polyols and trehalose. This shows that culture age and environmental conditions affect the physiological quality of inoculum and can thereby determine its potential for biocontrol.  相似文献   

4.
AIMS: The effect of osmotic and matric potential stress on growth and sugar alcohols (polyols: glycerol, erythritol, arabitol and mannitol) and sugars (trehalose and glucose) accumulation in toxigenic and nontoxigenic colonies of Aspergillus flavus and A. parasiticus was evaluated. METHODS AND RESULTS: Growth of Aspergillus section Flavi with significant reductions at 20 and 30 degrees C was more sensitive to changes in matric potential, between 60 and 100% in the range of -7 to -14 MPa. No significant differences were found between toxigenic and nontoxigenic strains for both species. Total polyol accumulation in unamended maize meal agar medium (-0.75 MPa water potential) was higher at 30 than 20 degrees C. The major change in concentrations of endogenous sugars and total polyols was in matrically amended medium (with PEG 8000) at -7 and -10 MPa. Accumulation of glucose, arabitol, mannitol and erythritol content of A. flavus and A. parasiticus mycelial colonies was greater in normal unstressed maize meal agar medium (-0.75 Mpa) at 20 degrees C. This was modified by solute and matric stress. CONCLUSIONS: The data showed relative sensitivity to osmotic and matric potential, and temperature, and the impact on growth rates, polyol and sugar accumulation in mycelia of A. flavus and A. parasiticus. SIGNIFICANCE AND IMPACT OF THE STUDY: The matric potential effects on growth may be of particular importance for growth and survival in environments with low-matric potential stress. The tolerance of spoilage fungi such as Aspergillus section Flavi to such modifications could increase the potential for spoilage and mycotoxin production in such substrates. This knowledge is important for understanding the relative ecological fitness of these aflatoxigenic species and in the development of prevention strategies for their control.  相似文献   

5.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

6.
Culture conditions which lead to the intracellular accumulation of arabitol and mannitol in Geotrichum candidum were investigated. The accumulation of arabitol was dependent on the concentrations of metabolizable hexoses, the non-metabolizable disaccharide sucrose, NaCl and KCl in the growth medium. In media containing 2% (w/v) glucose, fructose or l-sorbose cultures contained only mannitol after 48 h or 72 h growth. In media containing 10% (w/v) to 30% (w/v) glucose, or 25% (w/v) fructose or l-sorbose there was an increase in the total concentration of intracellular polyol due to the accumulation of arabitol. This pentitol was also found to accumulate intracellularly when the organism was grown in medium containing 34% (w/v) sucrose, 0.7 M NaCl or 0.7 M KCl in addition to 2% (w/v) glucose. Under the conditions tested no change in the accumulation of mannitol or ethanol-soluble carbohydrate, believed to be primarily composed of trehalose, was evident.Intracellular polyol was released during incubation of arthrospores obtained from media containing 25% or 10% glucose, in distilled water at 25° C, but no polyol was released under these conditions from arthrospores obtained from growth in 2% glucose medium.  相似文献   

7.
Resistance of food spoilage yeasts to sorbic acid   总被引:2,自引:0,他引:2  
Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were grown on Sabouraud Dextrose Agar (SDA) modified with KCl to give a range of water activity (aw) from 0.938 to 0.998. Growth of all three species was optimal at 0.983 aw and growth occurred over the aw range tested. Acyclic sugar alcohol (polyol) and trehalose content of conidia was determined by HPLC and found to vary with species and aw. Conidia of B. bassiana and P. farinosus were found to contain totals of 1.5% and 2.3% polyols respectively at 0.998 aw, and double these amounts at <0.950 aw. Conidia of M. anisopliae contained from 5.7% to 6.8% polyols at each aw tested. In conidia of all three species the predominant polyol was mannitol. The lower molecular weight polyols, arabitol and erythritol, were found to accumulate at reduced aw. Small amounts of glycerol were present in conidia of each species; <15% total polyols. Conidia of B. bassiana and M. anisopliae contained about 0.5% trehalose from 0.970 to 0.998 aw, but only trace amounts below 0.950 aw. Conidia of P. farinosus contained 2.1% trehalose at 0.998 aw and this decreased to <0.1% below 0.950 aw. Potential to manipulate the endogenous reserves of conidia of these biological control agents to enhance viability and desiccation toierance is discussed  相似文献   

8.
Glycerol is a by-product generated in large amounts during the production of biofuels. This study presents an alternative means of crude glycerol valorization through the production of erythritol and mannitol. In a shake-flasks experiment in a buffered medium, nine Yarrowia lipolytica strains were examined for polyols production. Three strains (A UV'1, A-15 and Wratislavia K1) were selected as promising producers of erythritol or/and mannitol and used in bioreactor batch cultures and fed-batch mode. Pure and biodiesel-derived crude glycerol media both supplemented (to 2.5 and 3.25?%) and not-supplemented with NaCl were applied. The best results for erythritol biosynthesis were achieved in medium with crude glycerol supplemented with 2.5?% NaCl. Wratislavia K1 strain produced up to 80.0?g?l(-1) erythritol with 0.49?g?g(-1) yield and productivity of 1.0?g?l(-1)?h(-1). Erythritol biosynthesis by A UV'1 and A-15 strains was accompanied by the simultaneous production of mannitol (up to 27.6?g?l(-1)). Extracellular as well as intracellular erythritol and mannitol ratios depended on the glycerol used and the presence of NaCl in the medium. The results from this study indicate that NaCl addition to the medium improves erythritol biosynthesis, and simultaneously inhibits mannitol formation.  相似文献   

9.
It is shown that the rate of sporogenesis, the appearance of low-molecular-weight thiols, and the activation of carbohydrate synthesis in spores adversely affected the viability of Aspergillus niger conidia during storage. Conversely, the prevalence of trehalose over mannitol and the absence of glycerol, erythritol, and glucose in carbohydrate composition facilitated viability of conidia. The data obtained are discussed in regard to the biochemical criteria that may be used to characterize quiescent state of fungi and retaining the viability of the inoculum.  相似文献   

10.
Ustilago scitaminea synthesizes specific carbohydrates, mainly erythritol and mannitol, plus smaller quantities of arabitol, inositol, and trehalose. Intensive secretion of erythritol is obtained when the fungus is grown in liquid culture. Glucose, fructose, or sucrose can be used interchangeably as carbon sources by the fungus, sucrose being quickly inverted.  相似文献   

11.
It is shown that the rate of sporogenesis, the appearance of low-molecular-weight thiols, and the activation of carbohydrate synthesis in spores adversely affected the viability of Aspergillus niger conidia during storage. Conversely the prevalence of trehalose over mannitol and the absence of glycerol, erythritol, and glucose in the carbohydrate composition facilitated the viability of conidia. The data obtained are discussed with regard to the biochemical criteria that may be used to characterize the quiescent state of fungi and retaining the viability of the inoculum.  相似文献   

12.
Cell cultures and fermentation broths are complex mixtures of organic and inorganic compounds. Many of these compounds are synthesized or metabolized by microorganisms, and their concentrations can impact the yields of desired products. Carbohydrates serve as carbon sources for many microorganisms, while sugar alcohols (alditols), glycols (glycerol), and alcohols (methanol and ethanol) are metabolic products. We used high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) to simultaneously analyze for carbohydrates, alditols, and glycerol in growing yeast (Saccharomyces cerevisiae) cultures and their final fermentation broths. Both cultures were grown on complex undefined media, aliquots centrifuged to remove particulates, and the supernatants diluted and directly injected for analysis. Pulsed amperometry allowed a direct detection of the carbohydrates, alditols, and glycols present in the cultures and fermentation broths with very little interference from other matrix components. The broad linear range of three to four orders of magnitude allowed samples to be analyzed without multiple dilutions. Peak area RSDs were 2-7% for 2, 3-butanediol, ethanol, glycerol, erythritol, rhamnose, arabitol, sorbitol, galactitol, mannitol, arabinose, glucose, galactose, lactose, ribose, raffinose, and maltose spiked into a heat-inactivated yeast culture broth supernatant that was analyzed repetitively for 48 h. This method is useful for directly monitoring culture changes during fermentation. The carbohydrates in yeast cultures were monitored over 1 day. A yeast culture with medium consisting primarily of glucose and trace levels of trehalose and arabinose showed a drop in sugar concentration over time and an increase in glycerol. Yeast growing on a modified culture medium consisting of multiple carbohydrates and alditols showed preference for specific carbon sources and showed the ability to regulate pathways leading to catalysis of alternative carbon sources.  相似文献   

13.
Summary Dikaryotic cells of S. commune synthesized polyols throughout the life cycle when grown on glucose, cellobiose, or cellulose. Basidiospores contained arabitol and mannitol which were depleted during germination. The mannitol content of the young germlings rose to normal levels within a day; arabitol accumulation remained depressed for 5 to 7 days and then returned to normal levels characteristic of vegetative cells. Individual homokaryons differed in their production of intracellular polyols, which, unlike germlings, remained constant with cultural age. Homokaryon (str. 699) produced low levels of arabitol but high levels of glycerol while another homokaryon (str. 845) was the reverse. Mixtures of these homokaryons as well as the dikaryon (699×845) produced arabitol and glycerol levels intermediate between the parent homokaryons. High concentrations of glucose did not change the nature of the polyols produced. Arabitol formation could be induced prematurely in germlings or elevated in the dikaryon by growth on acetate or ethanol. Both homokaryons responded to growth on acetate with elevated arabitol production; acetate induction of arabitol formation was repressed in all types of cells if glucose were added simultaneously with acetate. Maltose, cellobiose, and trehalose also stimulated arabitol formation in young germlings, suggesting that glucose repression was the cause of decreased arabitol formation in basidiospore germlings. There was no correlation between the formation of arabitol and the derepression of isocitrate lyase or change in specific activities of alkaline and acid phosphatase in germlings grown on various carbon sources.  相似文献   

14.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. InMucorales representatives (subkingdomEomycota, phylumArchetnycota, classZygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes inBlakeslea trispora. InAscomycota (subkingdomNeomycota), oversynthesis of mannitol and glycerol occurs under hypothermia, whereas oversynthesis of trehalose and inositol takes place under hyperthermia.Basidiomycota (subkingdomNeomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed inPleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

15.
高浓度盐对耐高渗酵母产多元醇的影响   总被引:2,自引:0,他引:2  
假丝酵母OS-300菌株在含有30%葡萄糖的高浓度基质中能产三种多元醇,甘油,阿拉伯醇和赤藓糖醇,但是在含18%NaCl的高浓度基质中产甘油,。同时,还发现几种原来不产甘油的耐高渗酵母在含有9%NaCl的高浓度培养液中也能形成大量的甘油,该现象表明:产多元醇耐高渗酵母的代谢途径可以在高盐浓度下被明显地改变。  相似文献   

16.
Ectomycorrhizal fungi have been shown to survive sub-zero temperatures in axenic culture and in the field. However, the physiological basis for resistance to freezing is poorly understood. In order to survive freezing, mycelia must synthesise compounds that protect the cells from frost damage, and certain fungal-specific soluble carbohydrates have been implicated in this role. Tissue concentrations of arabitol, mannitol and trehalose were measured in axenic cultures of eight Hebeloma strains of arctic and temperate origin grown at 22, 12, 6 and 2 degrees C. In a separate experiment, mycelia were frozen to -5 degrees C after pre-conditioning at either 2 degrees C or 22 degrees C. For some, especially temperate strains, there was a clear increase in specific soluble carbohydrates at lower growth temperatures. Trehalose and mannitol were present in all strains and the highest concentrations (close to 2.5% and 0.5% dry wt.) were recorded only after a cold period. Arabitol was found in four strains only when grown at low temperature. Cold pre-conditioning enhanced recovery of mycelia following freezing. In four out of eight strains, this was paralleled by increases in mannitol and trehalose concentration at low temperature that presumably contribute towards cryoprotection. The results are discussed in an ecological context with regard to mycelial overwintering in soil.  相似文献   

17.
《Experimental mycology》1991,15(3):279-282
The metabolism of glucose in resting cells ofCandida albicans was studied by13C NMR spectrometry using13C-labeled glucose. Under aeration, the formation of ethanol, glycerol, arabitol, mannitol, and trehalose was observed. The addition of inhibitors of the respiratory chain or the omission of aeration resulted in a total loss of formation of those polyols and trehalose, with ethanol being the only detectable product. Thus, respiration seems to favor the production of polyols including glycerol, as well as that of trehalose. With regard to glycerol, this finding is in contrast with the previous observation inSaccharomyces cerevisiae that oxygenation represses its production.  相似文献   

18.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. In Mucorales representatives (subkingdom Eomycota, phylum Archemycota, class Zygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes in Blakeslea trispora. Basidiomycota (subkingdom Neomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed in Pleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

19.
Overwintering adults of the spruce bark beetle, Ips typographus (L.) showed an unusually complex sugar/polyol cryoprotectant system. The major components of the multiple system were: glucose (177.6 mmolL(-1), March); trehalose (175.0 mmolL(-1), December); sorbitol (147.9 mmolL(-1), January); mannitol (81.2 mmolL(-1), March); and erythritol (40.7mmolL(-1), March) (in the parentheses, the maximum concentrations are shown and the month when they were reached). Other minor components were glycerol, fructose, threitol, myo-inositol, arabinitol and ribitol. Distinct seasonal patterns of accumulation/depletion in various components were found. Glycerol, trehalose and glucose started to accumulate first, during early autumn, when the air temperatures fluctuated between 20 and 0 degrees C, and diapause beetles continued in feeding. Glycerol was depleted, glucose remained stable and trehalose continued in accumulation during late autumn when the temperatures oscillated around 0 degrees C. During early winter severe frosts reaching -20 degrees C came, the beetles terminated their diapause and trehalose was partially depleted, while mannitol, sorbitol, fructose, threitol and erythritol started to accumulate. Cold weather continued also during late winter when the beetles remained quiescent. During this period, trehalose was re-accumulated, threitol and erythritol continued to increase, mannitol remained stable and sorbitol, fructose decreased. All cryoprotectans were finally cleared in the beetles which were spontaneously leaving bark during early spring. The seasonal maximum of total concentration of all cryoprotectants (578.2 mOsmol L(-1)) was reached in March. Such a concentration results in colligative depression of melting point of body fluids down by 1.08 degrees C only. It suggests that the potential cryoprotective effect of accumulated sugars and polyols was related rather to their non-colligative functions.  相似文献   

20.
The entomopathogenic fungus Beauveria bassiana GK2016 grown in a liquid medium incorporating gelatin as the sole carbon and nitrogen source produced an extracellular serine protease (molecular weight, 35,000; pI ca. 10). Without gelatin, B. bassiana could utilize N-acetyl-d-glucosamine (GlcNAc; 2-acetamido-2-deoxy-d-glucose) as the sole source of carbon and nitrogen, and GlcNAc availability increased the storage carbohydrate content in mycelia. Synthesis of protease was repressed in gelatin medium containing GlcNAc at levels of >1.07 mumol mg of fungal dry weight. At levels below this, protease synthesis was initiated; subsequently, free amino nitrogen appeared in the medium and diauxic growth was observed. Slow feeding with GlcNAc (35.34 mug ml h) did not repress protease synthesis nor did GlcNAc accumulate in the medium above 0.5 mg ml. Increasing the rate of release of GlcNAc (83.51 mug ml h) resulted in the accumulation of GlcNAc in the medium to 2.0 mg ml, a 45% increase in growth and a decrease in protease synthesis by about 81%. Free amino acids generated from the hydrolysis of gelatin did not repress protease synthesis. These data are interpreted in terms of known interaction of B. bassiana with insect cuticular components. We suggest that the action of extracellular chitinases synthesized by B. bassiana on insect cuticle, and pursuant release of GlcNAc, may have important consequences on the regulation of other extracellular catabolic enzymes such as the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号