首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exopolymer producing bacterium Bacillus megaterium was isolated from the infected plant leaf of Aralia species. The isolated organism produced 10–11 g/l of polymer in a synthetic medium consisting of glucose, ammonium nitrate and various salts. Optimum conditions for polymer production were determined. Amongst various carbon and nitrogen sources tested sucrose and ammonium nitrate gave maximum production. C/N ratio of the medium, temperature and pH for optimum polymer production were also investigated. Some of the physico-chemical properties, such as relative viscosity, specific viscosity and reduced viscosity of the polymer were studied at various concentrations and temperatures. Intrinsic viscosity of the polymer was also determined.  相似文献   

2.
Zymomonas mobilis strain 113 “S” produces levan – an extracellular, viscous, biologically active, non-toxic fructose polymer with a unique structure and extraordinary properties. This polysaccharide was isolated at two different degrees of purity by alcohol precipitation from aqueous solutions and was characterized with respect to some rheological properties and stability of viscous solutions. The effects of temperature, pH and salt concentration on the viscosity of 1–3% levan solutions were examined. The viscosity of levan solutions was found to be quite stable and reversible at room temperature over a wide range of pH from 4 to 11. The viscosity was slightly affected by increased salt concentration. Levan solutions were rather stable at high temperatures (up to 70°C, 1 h, pH 6), where the viscosity could be almost completerly restored (up to 80–100%). Therefore, the degradation of the polymer structure under these conditions is probably insignificant. Temperatures of 70–100°C with a pH of less than 3.5 caused irreversible degradation of the levan structure. The above-mentioned properties of levan, obtained from Zymomonas mobilis 113 “S”, demonstrated the potential for the development of various therapeutic forms of pharmacologically-active levan and their application in medicine as well as in the food and other industries.  相似文献   

3.
The physicochemical and rheological properties of a water-soluble chitosan (WSC) derivative were characterized in order to facilitate its use as a novel material for biomedical applications. The WSC was prepared by conjugating glycidyltrimethylammonium chloride (GTMAC) onto chitosan chains. Varying the molar ratio of GTMAC to chitosan from 3:1 to 6:1 produced WSCs with a degree of substitution (DS) that ranged from 56% to 74%. The WSC with the highest DS was soluble in water up to concentrations of 25 g/dL at room temperature. An increase in the polymer concentration gradually increased both the pH and conductivity of the WSC solutions. The rheological properties of the WSC solutions were found to be dependent on the salt and polymer concentrations as well as the DS value. In the absence of salt, the rheological behavior of the WSC was found to be typical of that for a polyelectrolyte in the dilute solution regime. However, the addition of salt decreased the viscosity of the polymer solution due to the reduction of electrostatic repulsions by the positively charged trimethylated ammonium groups of the WSC. In the concentrated regime, the viscosity of the WSCs was found to follow a power-law expression. The lowest DS WSC had the more favorable viscoelastic properties that were attributed to its high molecular weight, as confirmed by the stress relaxation spectra and intrinsic viscosity measurements. The effect of DS on the degree of interaction between WSC and the lipid egg phosphatidylcholine was investigated by FTIR analysis. Overall, the lower DS WSC had enhanced rheological properties and was capable of engaging in stronger intermolecular physical interactions.  相似文献   

4.
Xu X  Chen P  Zhang L 《Biorheology》2007,44(5-6):387-401
The viscoelastic properties of Aeromonas (A) gum in water were investigated by using the Rheometric Scientific ARES controlled strain rheometer. An intrinsic viscosity of 8336 ml/g was obtained according to the Fuoss-Straus equation. The effect of salt concentration on intrinsic viscosity revealed that the A gum exists as semiflexible chain. Typical shear-thinning (pseudoplastic) behavior was observed at concentrations higher than 0.52%. The zero shear viscosity (eta(0)) increased with increasing polysaccharide concentration (c) showing a gradient of approximately 1.0, 2.9 and 4.8 in different concentration domains. The critical concentrations c* and c**, at which the transitions from a dilute solution of independently moving chains to semidilute and then concentrated domains occurred, were determined roughly to be 1.2% and 3.5%. The results from dynamic experiments revealed that the A gum solution shows characteristics of polymer solutions without any evidence of gel-like character. All the results from steady and dynamic tests suggest that the A gum is a non-gelling polysaccharide. The temperature dependence of apparent viscosity was described by Arrhenius equation and the flow activation energy was estimated to be 45.2 kJ/mol, which is independent on polymer concentration.  相似文献   

5.
Alginate is a copolymer of β-d-mannuronic and α-l-guluronic acids. Distribution of these monomers in the alginate structure is one of the important characteristics that affect the commercial value of the polymer. In the present work, the effect of agitation speed in the range of 200–700 rpm on alginate production by Azotobacter vinelandii ATCC® 9046 was investigated at a dissolved oxygen tension of 5% of air saturation. Experiments were conducted in a fermentor operated in batch mode for 72 h while the production of biomass and alginate, the consumption of substrate and the change in culture broth viscosity and monomer distribution of the polymer were monitored. Results showed that the growth rate of the bacteria increased from 0.165 to 0.239 h?1 by the increase of mixing speed from 200 to 400 rpm. On the other hand, alginate production was found to be the most efficient at 400 rpm with the highest value of 4.51 g/l achieved at the end of fermentation. The viscosity of culture broth showed similar trends to alginate production. Viscosity was recorded as 24.61 cP at 400 rpm while it was only 4.26 cP at 700 rpm. The MM- and GG-block contents were almost equal in most of the culture times at 400 rpm. On the other hand, GG-blocks dominated at both low and high mixing speeds. Knowing that GG-blocks make rigid and protective gels with divalent cations, due to the higher GG-block content, the gel formation potential is higher at 200 rpm as well at 700 rpm, which might originate from the unfavorable environmental conditions that the bacteria were exposed to.  相似文献   

6.
The investigated polymers, poly(sebacic acid-co-ricinoleic acid) containing > or =70% ricinoleic acid, may be injected via a 22 gauge needle and become gel upon contact with aqueous medium, both in vitro and in vivo. Various properties of the polymers including viscosity, thermal analysis, and in vivo behavior, before and after exposure to aqueous medium, were determined. These polymers were observed using scanning electron microscopy (SEM) at dry and wet states. It was found that the viscosity and melting temperature of P(SA:RA) increased after exposure to buffer. The viscosity at 37 degrees C of P(SA:RA)3:7 had the highest increase: from 4200 cP before to 8940 cP after exposure to buffer; in the case of P(SA:RA)25:75 before exposure to buffer the viscosity was 1150 cP while after it raised to 3200 cP. The viscosity of P(SA:RA)2:8 also increased from 400 cP before exposure to buffer to 1000 cP after. On the other hand polymer without sebacic acid, (poly(ricinoleic acid)), did not show gelation properties. Thermal analysis also showed an increase in the melting point of the polymers exposed to the aqueous medium during the first 24 h of incubation. Images obtained by SEM showed formation of a three-dimensional network in polymers exposed to buffers. When injected into animals, P(SA:RA) forms a solid implant in the injection site already at 8 h postinjection.  相似文献   

7.
Amphiphilic polysaccharides, obtained by the attachment of various hydrocarbon groups onto dextran, are studied in aqueous solutions. The viscosity of their aqueous solutions is examined as a function of concentration and temperature in the range 25-65 degrees C. Varying polymer concentration, viscosity follows a polynomial development of Huggins equation in which the coefficients can be calculated from the Huggins constant determined in the dilute domain (Matsuoka-Cowman equation). For all polymers, the solution viscosity follows an Arrhenius-like variation with temperature. The activation energy of the aqueous solutions is determined as a function of polymer concentration and structural characteristics (nature and amount of grafted hydrocarbon groups). The variation of activation energy with polymer concentration is shown to be consistent with predictions based on the Matsuoka-Cowman equation combined with the equation of Andrade. This conclusion is extended to other polysaccharides using data from the literature.  相似文献   

8.
《Biorheology》1996,33(4-5):319-332
The shear and extensional viscosity characteristics have been compared for hyaluronan and two samples of a cross-linked derivative, hylan, of different molecular weights. While shear thinning behavior was observed for all systems in shear flow, strain thickening was observed in extensional flow for the relatively dilute systems. However, there was a progressive transition to shear thinning behavior as the polymer concentration was increased. It is evident from the results that the shear flow techniques alone provide an incomplete picture of the rheological properties of these materials and that extensional flow characteristics are potentially dominant. For example, at relatively high deformation rates of 500 s1 and above, our results show that the extensional viscosities of aqueous solutions of the various polymers are at least two orders of magnitude greater than their corresponding shear flow viscosities. The incremental differences in viscosity with concentration increased with increasing molecular mass of the polymers and were greater in exensional flow than shear flow. These results demonstrate that the dynamic network structure formed by the higher molecular mass hylans offer potentially better physical and mechanical properties for viscosupplementation of diseased osteoarthritis joints compared with the parent hyaluronan.  相似文献   

9.
With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.  相似文献   

10.
New Bacterial Polysaccharide from Arthrobacter   总被引:1,自引:1,他引:0       下载免费PDF全文
A bacterial strain (NRRL B-1973) isolated from soil at Guatemala City and tentatively identified as an Arthrobacter species produced a polysaccharide with unusual properties. Conditions were studied for the production of this microbial gum in shaken flasks and 20-liter fermentors. Suitable nutrients for optimal polysaccharide production included 3% glucose, 0.3% enzyme-hydrolyzed casein, magnesium sulfate, manganese sulfate, and potassium phosphate buffer (pH 7.0). Polysaccharide yields ranged from 40 to 45%, based on initial dextrose in the medium in 3- or 4-day fermentations. The gum was readily recovered from culture fluid by alcohol precipitation in the presence of an electrolyte. The Arthrobacter gum exhibited characteristics unique for a polyelectrolyte. Viscosity of solutions was not decreased by heating in the presence of salt, and the gum withstood a temperature of 121 C for 30 min. At polysaccharide levels above 0.75%, gels were formed when solutions were autoclaved with KCl. There was no significant change in viscosity over a pH range of 5.0 to 10.0.  相似文献   

11.
Levan is a homopolymer of fructose with many outstanding properties like high solubility in oil and water, strong adhesiveness, good biocompatibility, and film-forming ability. However, its industrial use has long been hampered by costly production processes which rely on mesophilic bacteria and plants. Recently, Halomonas sp. AAD6 halophilic bacteria were found to be the only extremophilic species producing levan at high titers in semi-chemical medium containing sucrose, and in this study, pretreated sugar beet molasses and starch molasses were both found to be feasible substitutes for sucrose. Five different pretreatment methods and their combinations were applied to both molasses types. Biomass and levan concentrations reached by the Halomonas sp. AAD6 cells cultivated on 30 g/L of pretreated beet molasses were 6.09 g dry cells/L and 12.4 g/L, respectively. When compared with literature, Halomonas sp. was found to stand out with its exceptionally high levan production yields on available fructose. Molecular characterization and monosaccharide composition studies confirmed levan-type fructan structure of the biopolymers. Rheological properties under different conditions pointed to the typical characteristics of low viscosity and pseudoplastic behaviors of the levan polymers. Moreover, levan polymer produced from molasses showed high biocompatibility and affinity with both cancerous and non-cancerous cell lines.  相似文献   

12.
Over 200 bacterial strains were selected for anaerobic growth at 50°C and extracellular polysaccharide production in a sucrose-mineral salts medium with NaNO3 and up to 10% NaCl. The predominant cell type was an encapsulated gram-positive, motile, facultative sporeforming rod similar to Bacillus species. Strain SP018 grew and produced the polysaccharide on a variety of substrates at salinities up to 12% NaCl. Good polymer production only occurred anaerobically and was optimal between 4 and 10% NaCl. The ethanol-precipitated SP018 polymer was a charged heteropolysaccharide that contained glucose, mannose, arabinose, ribose, and low levels of allose and glucosamine. The SP018 polymer showed pseudoplastic behavior, was resistant to shearing, and had a higher viscosity at dilute concentrations and at elevated temperatures than xanthan gum. High-ionic-strength solutions reversibly decreased the viscosity of SP018 polymer solutions. The bacterium and the associated polymer have many properties that make them potentially useful for in situ microbially enhanced oil recovery processes.  相似文献   

13.
Summary The addition of corn steep liquor (CSL) to batch cultures of Xanthomonas campestris using sucrose as carbon source stimulated cell growth rate, viscosity and xanthan production as compared to non-supplemented cultures. The addition of CSL to a basal medium at a dose of 1 g/l, increased xanthan production and viscosity by 22% and 44% respectively. CSL also shortened the cultivation time and promoted a more efficient sucrose utilization for polymer synthesis. After 72 h of incubation the xanthan yield per sucrose consumed in the CSL-amended culture was 0.63 g/g, this is, 15% higher than without CSL addition. At higher doses of CSL cell growth rate was also increased but not polymer production.  相似文献   

14.
Seventeen wild-type Xanthomonas isolates were screened in terms of broth viscosity in shake-flasks. As culture conditions affect polymer characteristics, a fair comparison among isolates required their cultivation in a fermenter under controlled dissolved oxygen tension. Three isolates and a reference strain were studied. The mean molecular weights and molecular weight distributions of their xanthans were determined. Products showed different pyruvate (0.2–7%), acetate (5–10%) and proteinaceous nitrogen (1–3%) contents. The selected isolates exhibit properties which could improve xanthan gum production and some could be used to produce polymers with specific characteristics.  相似文献   

15.
Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the consistencies of EPS solutions from five different strains were assigned to differences in their molecular masses and structures.  相似文献   

16.
The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer–Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f 2 metric values. The release profiles found to follow Higuchi’s square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.  相似文献   

17.
Red blood cell (RBC) aggregation and blood viscosity are important determinants of in vivo blood flow dynamics and, in marine mammals, these parameters may impact diving physiology by altering blood oxygen delivery during the diving response. Weddell seals are superb divers and exhibit age-related patterns in blood oxygen chemistry and diving ability. By contrast, bowhead whales are not long duration divers, and little is known of their blood properties relative to diving. The present study was designed to compare rheological characteristics of blood from Weddell seal pups, Weddell seal adults, and from adult bowhead whales: blood viscosity and RBC aggregation in plasma and in polymer solutions (i.e., RBC "aggregability") were measured. Salient findings included: (1) significant 4- to 8-fold greater aggregation in blood from adult seals compared with pups and human subjects; (2) 2-to 8-fold greater aggregation in bowhead whale blood compared with human blood; (3) compared to human red cells, enhanced RBC aggregability of RBC from adult seals and whales as determined by their greater aggregation in polymer solutions; (4) increasing RBC aggregation and aggregability of seal pup blood over a seven day period following birth; (5) significantly greater blood viscosity for adult seals compared with pups at both native and standardized hematocrits. These results indicate that, for both species, hemorheological parameters differ markedly from those of humans, and suggest progressive changes with seal age; the physiological implications of these differences have yet to be fully defined.  相似文献   

18.
19.
The biomechanical properties of articular cartilage change profoundly with aging. These changes have been linked with increased potential for cartilage degeneration and osteoarthritis. However, less is known about the change in biomechanical properties of chondrocytes with increasing age. Cell stiffness can affect mechanotransduction pathways and may alter cell function. We measured aging-related changes in the biomechanical properties of chondrocytes. Human chondrocytes were isolated from knee articular cartilage within 48 hours after death or from osteochondral specimens obtained from knee arthroplasty. Cells were divided into two age groups: between 18 and 35 years (18 -- 35); and greater than 55 years (55+) of age. The 55+ group was further subdivided based on visual grade of osteoarthritis: normal (N) or osteoarthritic (OA). The viscoelastic properties of the cell were measured using the previously described micropipette cell aspiration technique. The equilibrium modulus, instantaneous modulus, and apparent viscosity were significantly higher in the 55+ year age group than in the 18 -- 35 age group. On the other hand, no differences were found in the equilibrium modulus, instantaneous modulus, or apparent viscosity between the N and OA groups. The increase in cell stiffness can be attributed to altered mechanical properties of the cell membrane, the cytoplasm, or the cytoskeleton. Increased stiffness has been reported in osteoarthritic chondrocytes, which in turn has been attributed to the actin cytoskeleton. A similar mechanism may be responsible for our finding of increased stiffness in aging chondrocytes. With advancing age, changes in the biomechanical properties of the cell could alter molecular and biochemical responses.  相似文献   

20.
Culture broths of cellulolytic fungi were used together with commercial amylases to enhance the saccharification of cassava starch slurry. It was found that the addition of appropriate concentration of the cellulases Trichoderma viride and a soil isolated Basidiomycete, increased both the rate of sugar formation and the degree of solubilization, and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rheological properties of the must, and the additional sugar produced, an increased ethanol yield would be expected from the alcoholic fermentation of this hydrolyzate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号