首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus niger JTS 191 was selected from many microorganisms tested as capable of converting ionones to other compounds having aromas. The individual transformation products from β-ionone were isolated and identified by comparison with synthetically derived compounds. The major products were (R)-4-hydroxy-β-ionone and (S)-2-hydroxy-β-ionone. 2-Oxo-, 4-oxo-, 3,4-dehydro-, 2,3-dehydro-4-oxo-, 3,4-dehydro-2-oxo-, (S)-2-acetoxy-, (R)-4-acetoxy-, and 5,6-epoxy-β-ionone and 4-(2,3,6-trimethylphenyl)-but-3-en-2-one were also identified. Analogous transformation products of β-methylionone also were identified. Based on gas-liquid chromatographic analysis during the fermentation, we propose two main oxidative pathways of β-ionone. The results of this study suggest that these transformations of β-ionones may be useful as tobacco-flavoring compounds.  相似文献   

2.
Using techniques previously employed to identify ginger constituents in fresh organically grown Hawaiian white and yellow ginger varieties, partially purified fractions derived from the silica gel column chromatography and HPLC of a methylene chloride extract of commercially processed dry ginger, Zingiber officinale Roscoe, Zingiberaceae, which demonstrated remarkable anti-inflammatory activity, were investigated by gas chromatography-mass spectrometry. In all, 115 compounds were identified, 88 with retention times (R(t)) >21 min and 27 with <21 min. Of those 88 compounds, 45 were previously reported by us from fresh ginger, 12 are cited elsewhere in the literature and the rest (31) are new: methyl [8]-paradol, methyl [6]-isogingerol, methyl [4]-shogaol, [6]-isoshogaol, two 6-hydroxy-[n]-shogaols (n=8 and 10), 6-dehydro-[6]-gingerol, three 5-methoxy-[n]-gingerols (n=4, 8 and 10), 3-acetoxy-[4]-gingerdiol, 5-acetoxy-[6]-gingerdiol (stereoisomer), diacetoxy-[8]-gingerdiol, methyl diacetoxy-[8]-gingerdiol, 6-(4'-hydroxy-3'-methoxyphenyl)-2-nonyl-2-hydroxytetrahydropyran, 3-acetoxydihydro-[6]-paradol methyl ether, 1-(4'-hydroxy-3'-methoxyphenyl)-2-nonadecen-1-one and its methyl ether derivative, 1,7-bis-(4'-hydroxy-3'-methoxyphenyl)-5-methoxyheptan-3-one, 1,7-bis-(4'-hydroxy-3'-methoxyphenyl)-3-hydroxy-5-acetoxyheptane, acetoxy-3-dihydrodemethoxy-[6]-shogaol, 5-acetoxy-3-deoxy-[6]-gingerol, 1-hydroxy-[6]-paradol, (2E)-geranial acetals of [4]- and [6]-gingerdiols, (2Z)-neral acetal of [6]-gingerdiol, acetaldehyde acetal of [6]-gingerdiol, 1-(4-hydroxy-3-methoxyphenyl)-2,4-dehydro-6-decanone and the cyclic methyl orthoesters of [6]- and [10]-gingerdiols. Of the 27 R(t)<21 min compounds, we had found 5 from fresh ginger, 20 others were found elsewhere in the literature, and two are new: 5-(4'-hydroxy-3'-methoxyphenyl)-pent-2-en-1-al and 5-(4'-hydroxy-3'-methoxyphenyl)-3-hydroxy-1-pentanal. Most of the short R(t) compounds are probably formed by thermal degradation during GC (which mimics cooking) and/or commercial drying. The concentrations of gingerols, the major constituents of fresh ginger, were reduced slightly in dry ginger, while the concentrations of shogaols, the major gingerol dehydration products, increased.  相似文献   

3.
Ma J  Jin X  Yang L  Liu ZL 《Phytochemistry》2004,65(8):1137-1143
Seven new diarylheptanoids, i.e., (3S,5S)-3,5-diacetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3-acetoxy-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane, (5S)-5-acetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxy-5-methoxy-phenyl)heptan-3-one and 1,5-epoxy-3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane were isolated from the rhizomes of Chinese ginger (Zingiber officinale Roscoe), along with 25 known compounds, i.e., 8 diarylheptanoids, 14 gingerol analogs, a diterpene and 2 steroids. Their structures were elucidated by spectroscopic and chemical methods.  相似文献   

4.
In a continuing research for neolignans from Piper kadsura (Choisy) Ohwi, six benzofuranoid neolignans were isolated from the aerial part of the plant. Their structure determination were based on the spectroscopic analysis (UV, IR, MS, NMR and CD) and derivative synthesis. Three of the isolated compounds were identified as new structures: 7R, 8R, 1′S-△8′-3, 4-methylenedioxy-5′-methoxy-l′, 4′-dihydro-4′-oxo-7, 0, 2′, 8. l′-neolignan ( Ⅰ ), 7 R, 8 R, 1 ′ R- △8′ - 3,4- methylenedioxy- 1 ′- methoxy - 1′,6′- dihydro- 6′- oxo- 7.0.4′,8. 3′-neolignan (Ⅳ) and 7R, 8R, 1′S-△8′-3, 4-methylenedioxy-l′-methoxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan (Ⅴ). Known compounds among them are 7R, 8S,1′S-△8′-3, 4-methylenedioxy-5′-methoxy-1′, 4′-dihydro-4′-oxo-7. 0. 2′, 8. 1′-neolignan(Ⅱ), 7S, 8S, 1′R-△8′-3, 4, 5′-trimethoxy-1′, 4′-dihydro-4′-oxo-7.0. 2′, 8. 1′-neolignan (Ⅲ) and 75, 85, 1′S-△8′-3, 4, l′-trimethoxy-l′, 6′-dihydro-6′-oxo-7. 0. 4′, 8. 3′-neolignans (Ⅵ). All of them were isolated from the plant for the first time.  相似文献   

5.
通过规模化液态深层发酵获得灵芝发酵产物,采用多种硅胶色谱柱层析及重结晶的方式,从中分离得到10个化合物。通过核磁、质谱等波谱分析,鉴定出这些化合物均属于含羟基或酮基的不饱和脂肪酸类化合物,分别为(9S,10R,11E,13R)-9,10,13-trihydroxyoctadec-11-enoic acid(1)和(9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoic acid(2)的混合物、12S*,13S*-dihydroxy-9-oxo-10(E)- octadecenoic acid(3)、9R*,10R*-dihydroxy-13-oxo-11(E)-octadecenoic acid(4)、12S*,13R*-dihydroxy- 9-oxo-10(E)-octadecenoic acid(5)、9S*,10R*-dihydroxy-13-oxo-11(E)-octadecenoic acid(6)、10(S)-hydroxy-8(Z)-octadecenoic acid(7)、12-oxooctadeca-8,10-dienoic acid(8)、9,12-dihydroxy-10-eicosenoic acid(9)和9-oxooctadeca-10,12-dienoic acid(10)。这些化合物均为首次从灵芝发酵产物中获得,且具有不同程度的体外抗肿瘤活性。其中,化合物8和化合物10对L1210细胞增殖抑制的IC50值分别为13.00μmol/L和16.88μmol/L,对K562细胞增殖亦有良好的抑制效果,是具有抗肿瘤潜力的天然产物。  相似文献   

6.
We examined the pathway by which the fungicide biphenyl is metabolized in the imperfect fungus Paecilomyces lilacinus. The initial oxidation yielded the three monohydroxylated biphenyls. Further hydroxylation occurred on the first and the second aromatic ring systems, resulting in the formation of five di- and trihydroxylated metabolites. The fungus could cleave the aromatic structures, resulting in the transformation of biphenyl via ortho-substituted dihydroxybiphenyl to six-ring fission products. All compounds were characterized by gas chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. These compounds include 2-hydroxy-4-phenylmuconic acid and 2-hydroxy-4-(4'-hydroxyphenyl)-muconic acid, which were produced from 3,4-dihydroxybiphenyl and further transformed to the corresponding lactones 4-phenyl-2-pyrone-6-carboxylic acid and 4-(4'-hydroxyphenyl)-2-pyrone-6-carboxylic acid, which accumulated in large amounts. Two additional ring cleavage products were identified as (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)-acetic acid and [5-oxo-3-(4'-hydroxyphenyl)-2,5-dihydrofuran-2-yl]-acetic acid. We found that P. lilacinus has a high transformation capacity for biphenyl, which could explain this organism's tolerance to this fungicide.  相似文献   

7.
Toussaintine A (N-cinnamoyl-5,6-dehydro-4-hydroxyindolidin-2,7-dione), toussaintine B (N-cinnamoyl-5,6-dehydro-4,7-dihydroxyindolidin-2-one), toussaintine C (N-cinnamoyl-5,6-dehydro-4-hydroxyindolidin-7-one), toussaintine D (N-cinnamoyl-2-amino-4-hydroxy-7-oxo-2,3,8,9-tetrahydrobenzofuran) and toussaintine E (N-cinnamoyl-1-acetoxymethyl-2-amino-1-hydroxycyclox-5-en-4-one) were isolated as antibacterial and antifungal constituents of the leaves of Toussaintia orientalis Verdc. (Annonaceae) and their structures established from analysis of spectroscopic data. The compounds belong to a series of variously cyclized aminocinnamoyl tetraketide derivatives, showing the importance of rarely occurring Annonaceae species as sources of structurally diverse natural products.  相似文献   

8.
《Phytochemistry》1986,25(8):1953-1956
The wood bark of Mezilaurus itauba afforded in addition to seven known neolignans, three new compounds rel-(7R,8R,1′S,3′S)-Δ5′,8′-5′-methoxy-3,4-methylenedioxy-1′,2′,3′,4′-tetrahydro-2′,4′-dioxo-7.3′,8.1′-neolignan, rel-(7S,8S,1′S, 2′S, 3′R, 4′S)-Δ8′-2′,4′-dihydroxy-3,4-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan and rel-(7S,8S)-Δ8′-6′-hydroxy 5′-methoxy-3,4-methylenedioxy-7·O·2′,8.3′-neolignan. The latter compound has been detected previously in Aniba terminalis. The structures were elucidated by spectroscopic methods and comparison with related compounds.  相似文献   

9.
We examined the pathway by which the fungicide biphenyl is metabolized in the imperfect fungus Paecilomyces lilacinus. The initial oxidation yielded the three monohydroxylated biphenyls. Further hydroxylation occurred on the first and the second aromatic ring systems, resulting in the formation of five di- and trihydroxylated metabolites. The fungus could cleave the aromatic structures, resulting in the transformation of biphenyl via ortho-substituted dihydroxybiphenyl to six-ring fission products. All compounds were characterized by gas chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. These compounds include 2-hydroxy-4-phenylmuconic acid and 2-hydroxy-4-(4′-hydroxyphenyl)-muconic acid, which were produced from 3,4-dihydroxybiphenyl and further transformed to the corresponding lactones 4-phenyl-2-pyrone-6-carboxylic acid and 4-(4′-hydroxyphenyl)-2-pyrone-6-carboxylic acid, which accumulated in large amounts. Two additional ring cleavage products were identified as (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)-acetic acid and [5-oxo-3-(4′-hydroxyphenyl)-2,5-dihydrofuran-2-yl]-acetic acid. We found that P. lilacinus has a high transformation capacity for biphenyl, which could explain this organism's tolerance to this fungicide.  相似文献   

10.
The yeast Trichosporon mucoides, grown on either glucose or phenol, was able to transform biphenyl into a variety of mono-, di-, and trihydroxylated derivatives hydroxylated on one or both aromatic rings. While some of these products accumulated in the supernatant as dead end products, the ortho-substituted dihydroxylated biphenyls were substrates for further oxidation and ring fission. These ring fission products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses as phenyl derivatives of hydroxymuconic acids and the corresponding pyrones. Seven novel products out of eight resulted from the oxidation and ring fission of 3,4-dihydroxybiphenyl. Using this compound as a substrate, 2-hydroxy-4-phenylmuconic acid, (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid, and 3-phenyl-2-pyrone-6-carboxylic acid were identified. Ring cleavage of 3,4,4'-trihydroxybiphenyl resulted in the formation of [5-oxo-3-(4'-hydroxyphenyl)-2,5-dihydrofuran-2-yl]acetic acid, 4-(4'-hydroxyphenyl)-2-pyrone-6-carboxylic acid, and 3-(4'-hydroxyphenyl)-2-pyrone-6-carboxylic acid. 2,3,4-trihydroxybiphenyl was oxidized to 2-hydroxy-5-phenylmuconic acid, and 4-phenyl-2-pyrone-6-carboxylic acid was the transformation product of 3,4,5-trihydroxybiphenyl. All these ring fission products were considerably less toxic than the hydroxylated derivatives.  相似文献   

11.
Two new flavonoid-type C-glycosides, trollisin I (= (1S)-1,5-anhydro-1-[2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-4H-[1]benzopyran-8-yl]-2-O-(2-methylbutanoyl)-D-glucitol; 1) and its 2-O-benzoyl congener trollisin II (2), were isolated from Trollius chinensis Bunge, together with the two known compounds 2'-O-(2'-methylbutanoyl)isoswertisin (3) and vitexin galactoside (4). All compounds were identified by HR-ESI-MS and in-depth NMR-spectroscopic analyses. In antiviral assays, compound 3 was found to be moderately active towards influenza virus A.  相似文献   

12.
Dibenzylbutane and aryltetralone lignans from seeds of Virola sebifera   总被引:2,自引:0,他引:2  
Rezende KR  Kato MJ 《Phytochemistry》2002,61(4):427-432
Two lignans rel-(8R, 8'R)-3,4:3',4'-bis-(methylenedioxy)-7.7'-dioxo-lignan and (7'R,8'S,8S)-2'-hydroxy-3,4:4',5'-bis-(methylenedioxy)-7-oxo-2,7'-cyclolignan were isolated from seeds of Virola sebifera. The cyclolignan showed two atropisomers as determined by 1H NMR spectroscopy at low temperature.  相似文献   

13.
Either 3-O-benzoyl- (2a) or 3-O-benzyl-1,2-O-isopropylidene-beta-D-fructopyranose (2b) were regioselectively O-benzylated at C-4 to give 4a and 4b, respectively, which were transformed into 5-azido-3-O-benzoyl-4-O-benzyl- (6a) and 5-azido-3,4-di-O-benzyl-5-deoxy-1,2-O-isopropylidene-alpha-L-sorbopyranose (6b) by nucleophilic displacement of the corresponding 5-O-mesyl derivatives 5a and 5b by sodium azide in DMF, respectively. Compound 6b was also prepared from 4b in one step by the Mitsunobu methodology. Deacetonation of 6a and 6b gave the partially protected free azidouloses 8a and 8b, respectively, that were protected as their 1-O-TBDPS derivatives 9a and 9b. Hydrogenation of 9b over Raney nickel gave stereoselectively (2R,3R,4R,5S)-3,4-dibenzyloxy-2'-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) which was identified by transformation into the well known (2R,3R,4R,5S)-3,4-dihydroxy-2,5-bis(hydroxymethyl)pyrrolidine (1, DGDP).  相似文献   

14.
Both 25-epimers of (22E)-22-dehydro-1 alpha,25-dihydroxy-26-methylvitamin D3 [22-dehydro-26-methyl-1,25-(OH)2D3] were synthesized. The biological activity of these compounds was tested in binding affinity to chick intestinal receptor protein of 1 alpha,25-dihydroxy-vitamin D3 [1,25-(OH)2D3] and in stimulating for intestinal calcium transport and bone calcium mobilization with vitamin D-deficient rats. The relative potency of (25R)- and (25S)-22-dehydro-26-homo-1,25-(OH)2D3 and 1,25-(OH)2D3 in competing for the intestinal cytosolic binding was 1.7:1.5:1. A similar order of activity was observed on intestinal calcium transport and bone calcium mobilization. In the ability for stimulation of intestinal calcium transport, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were about 3.6 and 2.1 times as active as 1,25-(OH)2D3, respectively. In bone calcium mobilization tests, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were estimated to be 2.2 and 1.6 times as potent as 1,25-(OH)2D3, respectively.  相似文献   

15.
《Phytochemistry》1986,25(12):2889-2891
An investigation of Schizogyne glaberrima afforded in addition to known compounds 3-(acetoxy-methyl)-6-methyl-5-methoxy-benzofuran,10-acctoxy-8,9-epoxy-6-methoxy-thymol isobutyrate, 10-acetoxy-8-hydroxy-9-isobutyryloxy-6-methoxy-thymol,8-hydroxy-9,10-isobutyryloxy-thymol and 8,10-dihydroxy-9-isobutyryloxy-thymol, five new thymol derivatives, 8-ethoxy-9-isobutyryloxy-thymol, 10-acetoxy-8,9-dehydro-6-methoxy-thymol isobutyrate, 6-acetoxy-8,9-dehydro-9-carbomethoxy-10-hydroxy-thymol and 8,9-dihydroxy-10-isobutyryloxy-6-methoxy-thymol.  相似文献   

16.
The leaves and bark dichloromethane extracts of Ravensara anisata showed antifungal activity against the yeast Candida albicans and the phytopathogenic fungus Cladosporium cucumerinum in bioautographic TLC assays. Activity-guided fractionation afforded two new alpha-pyrones: 6R*-(4R*-acetoxy-2S*-hydroxy- 8-phenyloctyl)-5,6-dihydro-2-H-pyran-2-one and 6R*-(2S*-acetoxy-4R*- hydroxy-8-phenyloctyl)-5,6-dihydro-2-H-pyran-2-one. Their structures have been established by NMR spectroscopy, chemical methods and X-ray crystallographic analysis. The antifungal activity against C. albicans and C. cucumerinum was determined for both compounds.  相似文献   

17.
Maekawa H  Itoh K  Goda S  Nishiguchi I 《Chirality》2003,15(1):95-100
Anodic oxidation of 1-acetoxy-3,4-dihydronaphthalene (1) and alpha-acetoxy-beta-alkylstyrenes (3) at -78 degrees C in a mixed solvent of acetonitrile (CH(3)CN), tetrahydrofuran (THF), and acetic acid (AcOH) containing (S)-tetraethylammonium camphorsulfonate as a chiral supporting electrolyte brought about enantioselective formation of the corresponding 2-acetoxy-1-tetralones (2) and (R)-2-acetoxy-1-phenyl-1-alkanone (4) with maximum enantiomeric excess (ee) of 44% and 21%, respectively. Introduction of a 7-methoxy group into 1 and increase in bulkiness of a beta-alkyl group in 3 resulted in improvement of enantioselectivity of the reactions.  相似文献   

18.
From the roots of Leontopotium longifolium, three new bisabolane sesquiterpenes, rel-(1S,4R,5S,6R)-4,5-diacetoxy-6-[(R)-1,5-dimethylhexa-3,5-dienyl]-3-methylcyclohex-2-enyl (Z)-2-methylbut-2-enoate (1), rel-(1S,4R,5S,6R)-4,5-diacetoxy-6-[(R)-5-hydroxy-1,5-dimethylhex-3-enyl]-3-methylcyclohex-2-enyl (Z)-2-methylbut-2-enoate (2), rel-(1R,2S,4R,5S)-4-acetoxy-2-[(R)-5-hydroxy-1,5-dimethylhex-3-enyl]-5-methylcyclohexyl (Z)-2-methylbut-2-enoate (3), and a new coumarin, 2,3-dihydro-5-hydroxy-2-(1-methylethenyl)-7H-pyrano[2,3-g][1,4]benzodioxin-7-one (4) together with nine known compounds have been isolated. The structures of these compounds were established by spectroscopic methods. Compounds 1 and 2 exhibited moderate cytotoxic activities against human promyelocytic leukemia (HL-60) cells.  相似文献   

19.
1. Rabbits dosed orally with beta-ionone excreted in the urine unchanged beta-ionone, 3-oxo-beta-ionone, 3-oxo-beta-ionol, dihydro-3-oxo-beta-ionol and 3-hydroxy-beta-ionol. 2. Excretion products were isolated as 2,4-dinitrophenylhydrazone derivatives (beta-ionone, 3-oxo-beta-ionone, 3-oxo-beta-ionol and dihydro-3-oxo-beta-ionol) and as p-nitrobenzoate derivatives (3-oxo-beta-ionol, dihydro-3-oxo-beta-ionol and 3-hydroxy-beta-ionol), which were characterized and identified by comparison with the synthetic authentic compounds. 3. The glucuronides of 3-oxo-beta-ionol and dihydro-3-oxo-beta-ionol were also detected in the urine. The latter compound was isolated as free glucuronide, sodium salt and 2,4-dinitrophenylhydrazone.  相似文献   

20.
From solid cultures of the biologically important endophyte Streptomyces species LR4612, cultivated on Maytenus hookeri, four new and two known compounds were isolated. The new compounds were identified as (2S*,3S*)-5-amino-3-hydroxy-5-oxopentan-2-yl 3-(formylamino)-2-hydroxybenzoate (1), N-[(3R*,4R*)-3-amino-3,4-dihydro-4-methyl-2,6-dioxo-2H,6H-1,5-benzodioxocin-10-yl]formamide (2), (5beta,6alpha)-6,11-dihydroxyeudesmane (3), and 5-(6,7-dihydroxy-6-methyloctyl)furan-2(5H)-one (4); the known compounds were elucidated as sorbicillin (5) and N-acetyltyramine (6). The structures were established by HR-ESI-MS and in-depth NMR analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号