首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Headspace volatiles from eight strains of Aspergillus flavus (four aflatoxigenic strains and four nonaflatoxigenic strains), grown for 1, 2, 3, 4, 8, and 10 days in submerged cultures, were collected in Tenax GC traps. The traps were desorbed onto a 50-m gas-liquid chromatography capillary column by heat and gas purge from an external direct injector device. The column was interfaced with a mass spectrometer data acquisition system. Peaks were identified by comparing retention times and mass spectra with those obtained from authentic compounds and by using a computer-assisted mass spectral data base. Aflatoxigenic strains of A. flavus produced several C15H24 compounds (e.g., alpha-gurjunene, trans-caryophyllene, and cadinene) which peaked in 3-day cultures and were not present in earlier (1- and 2-day) or later (8- and 10-day) cultures. None of these volatiles were detected in nonaflatoxigenic strains of A. flavus. There was an apparent correlation between the release of C15H24 volatile compounds and the initiation of aflatoxin biosynthesis, and a correlation between decline of aflatoxin synthesis and the disappearance of the C15H24 compounds unique to aflatoxigenic A. flavus also existed.  相似文献   

2.
3.
AIMS: To develop a multiplex reverse transciption-polymerase chain reaction (RT-PCR) protocol to discriminate aflatoxin-producing from aflatoxin-nonproducing strains of Aspergillus flavus. METHODS AND RESULTS: The protocol was first optimized on a set of strains obtained from laboratory collections and then validated on A. flavus strains isolated from corn grains collected in the fields of the Po Valley (Italy). Five genes of the aflatoxin gene cluster of A. flavus, two regulatory (aflR and aflS) and three structural (aflD, aflO and aflQ), were targeted with specific primers to highlight their expression in mycelia cultivated under inducing conditions for aflatoxins production. 48-h-old cultures expressed the complete set of the genes analysed here whereas 24-h-old ones did not. Genomic PCR (quadruplex PCR) was also performed in parallel using chromosomal DNA extracted from the same set of strains to correlate the integrity of the genes with their expression. CONCLUSIONS: We show that a good correlation exists between gene expression of the aflatoxin genes, here analysed by multipex RT-PCR, and aflatoxin production, except for one strain that apparently transcribed all the relevant genes but did not produce aflatoxin in the medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first example of the application of a combination of multiplex PCR and RT-PCR approaches to screen a population of A. flavus for the presence of aflatoxigenic and nonaflatoxigenic strains. The proposed protocol will be helpful in evaluating the risk posed by A. flavus in natural environments and might also be a useful tool to monitor its presence during the processing steps of food and feed commodities.  相似文献   

4.
Microbe-free compressed air was passed continuously for a 3-day test period through an enclosed system containing fresh neem leaves; the resultant emitted volatiles were passed over the surface of submerged liquid cultures of a wild-type aflatoxigenic isolate of Aspergillus parasiticus. Aflatoxin determinations for the fungal culture that received neem-derived volatiles, after a 3-day incubation period, resulted in a 90% overall reduction in aflatoxin production and a 51% reduction in fungal biomass when compared with cultures that did not receive neem volatiles. In a separate experiment but in a similarly enclosed system, volatiles from fresh neem leaves were collected on a small Tenax column and were thermally desorbed and cryogenically focused on a capillary gas chromatography column. The neem volatiles were subsequently separated and identified by gas chromatography-mass spectrometry. Sixty-eight compounds were identified by comparison of retention times and mass spectra with either authentic compounds or spectra from a computer-assisted library database of mass spectra. It was found that 10% of the total headspace volatiles were composed of C3 to C9 alkenals, which are toxic to aflatoxigenic Aspergillus spp., which could explain the bioactivity that resulted in reduced biomass in the neem-treated cultures.  相似文献   

5.
A comparative biochemical study of an aflatoxigenic strain Aspergillus parasiticus NRRL 3240 and a nonaflatoxigenic strain A. flavus NRRL 3237 was carried out in order to have a better idea of regulation of aflatoxin biosynthesis. The results obtained revealed continuous primary metabolic activity (protein synthesis) in the nonaflatoxigenic strain while the aflatoxigenic stain showed inhibition of protein and nucleic acid synthesis. The aflatoxigenic strain showed higher levels of oxygen uptake, RNA, NAD, FMN and activities of glycolytic enzymes. Furthermore, it had lower of lipids and reduced activity of glucose-6-phosphate dehydrogenase, which is a source for NADPH. The differences observed have been discussed in relation to aflatoxin biosynthesis and its regulation.  相似文献   

6.
AIMS: To establish a relationship between lipase gene expression and aflatoxin production by cloning the lipA gene and studying its expression pattern in several aflatoxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. METHODS AND RESULTS: We have cloned a gene, lipA, that encodes a lipase involved in the breakdown of lipids from aflatoxin-producing A. flavus, A. parasiticus and two nonaflatoxigenic A. flavus isolates, wool-1 and wool-2. The lipA gene was transcribed under diverse media conditions, however, no mature mRNA was detected unless the growth medium was supplemented with 0.5% soya bean or peanut oil or the fungus was grown in lipid-rich medium such as coconut medium. The expression of the lipase gene (mature mRNA) under substrate-induced conditions correlated well with aflatoxin production in aflatoxigenic species A. flavus (SRRC 1007) and A. parasiticus (SRRC 143). CONCLUSIONS: Substrate-induced lipase gene expression might be indirectly related to aflatoxin formation by providing the basic building block 'acetate' for aflatoxin synthesis. No direct relationship between lipid metabolism and aflatoxin production can be ascertained, however, lipase gene expression correlates well with aflatoxin formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Lipid substrate induces and promotes aflatoxin formation. It gives insight into genetic and biochemical aspects of aflatoxin formation.  相似文献   

7.
Aspergillus flavus populations are genetically diverse. Isolates that produce either, neither, or both aflatoxins and cyclopiazonic acid (CPA) are present in the field. We investigated defects in the aflatoxin gene cluster in 38 nonaflatoxigenic A. flavus isolates collected from southern United States. PCR assays using aflatoxin-gene-specific primers grouped these isolates into eight (A-H) deletion patterns. Patterns C, E, G, and H, which contain 40 kb deletions, were examined for their sequence breakpoints. Pattern C has one breakpoint in the cypA 3' untranslated region (UTR) and another in the verA coding region. Pattern E has a breakpoint in the amdA coding region and another in the ver1 5'UTR. Pattern G contains a deletion identical to the one found in pattern C and has another deletion that extends from the cypA coding region to one end of the chromosome as suggested by the presence of telomeric sequence repeats, CCCTAATGTTGA. Pattern H has a deletion of the entire aflatoxin gene cluster from the hexA coding region in the sugar utilization gene cluster to the telomeric region. Thus, deletions in the aflatoxin gene cluster among A. flavus isolates are not rare, and the patterns appear to be diverse. Genetic drift may be a driving force that is responsible for the loss of the entire aflatoxin gene cluster in nonaflatoxigenic A. flavus isolates when aflatoxins have lost their adaptive value in nature.  相似文献   

8.
《Biological Control》2000,17(2):147-154
The effect of vegetative compatibility on the inhibition of aflatoxin B1 production by Aspergillus parasiticus was examined using nonaflatoxigenic strains. Nonaflatoxigenic white-conidial mutants were paired in different proportions on an agar medium with aflatoxigenic yellow-conidial mutants belonging to the same isolate, to the same vegetative compatibility group but with the original wild types differing in phenotype, and to different vegetative compatibility groups. Heterokaryosis as a result of hyphal anastomosis was detected by the presence of conidiogenous structures with a mixture of green and parental (white and/or yellow) chains of conidia. Sclerotium production (number and dry weight) was significantly greater in pairings of compatible strains that formed heterokaryons than in pairings of strains from different vegetative compatibility groups. In contrast, there were no consistent differences in aflatoxin B1 inhibition by nonaflatoxigenic strains in pairings from the same vegetative compatibility group and pairings from different groups. Therefore, the composition of vegetative compatibility groups within a population may be of minor importance in predicting the efficacy of a particular nonaflatoxigenic strain for the biological control of aflatoxin contamination of crops.  相似文献   

9.
Horn BW  Dorner JW 《Mycologia》2002,94(5):741-751
Strains of Aspergillus flavus often degenerate with serial transfers on culture media, resulting in morphological changes and loss of aflatoxin production. However, degeneration does not readily occur in nature as indicated by the wild-type morphological characters of newly isolated strains and the high percentage of aflatoxigenic A. flavus from soil and crops in some geographic regions. In this study, three aflatoxin-producing strains of A. flavus were serially transferred using conidia for 20 generations (three independent generation lines per strain) on potato dextrose agar at 30 C. The rate of degeneration was compared to that of cultures grown in the presence of competing fungi (A. terreus, Penicillium funiculosum, and the yeast, Pichia guilliermondii) and under adverse conditions of elevated temperature, reduced water activity, low pH, and nutrient deprivation. Formation of morphological variants and the associated loss of aflatoxin production over generations varied considerably according to strain and the generation line within each strain. In the strain most sensitive to degeneration on potato dextrose agar, aflatoxin-producing ability was maintained to varying degrees under adverse culture conditions, but not when A. flavus was competing with other fungi.  相似文献   

10.
Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (=NRRL 18543) and NRRL 21882 (the active component of afla‐guard®). However, the evolutionary potential of these strains to remain nonaflatoxigenic in nature is unknown. To elucidate the underlying population processes that influence aflatoxigenicity, we examined patterns of linkage disequilibrium (LD) spanning 21 regions in the aflatoxin gene cluster of A. flavus. We show that recombination events are unevenly distributed across the cluster in A. flavus. Six distinct LD blocks separate late pathway genes aflE, aflM, aflN, aflG, aflL, aflI and aflO, and there is no discernable evidence of recombination among early pathway genes aflA, aflB, aflC, aflD, aflR and aflS. The discordance in phylogenies inferred for the aflW/aflX intergenic region and two noncluster regions, tryptophan synthase and acetamidase, is indicative of trans‐species evolution in the cluster. Additionally, polymorphisms in aflW/aflX divide A. flavus strains into two distinct clades, each harbouring only one of the two approved biocontrol strains. The clade with AF36 includes both aflatoxigenic and nonaflatoxigenic strains, whereas the clade with NRRL 21882 comprises only nonaflatoxigenic strains and includes all strains of A. flavus missing the entire gene cluster or with partial gene clusters. Our detection of LD blocks in partial clusters indicates that recombination may have played an important role in cluster disassembly, and multilocus coalescent analyses of cluster and noncluster regions indicate lineage‐specific gene loss in A. flavus. These results have important implications in assessing the stability of biocontrol strains in nature.  相似文献   

11.
Aspergillus flavus was grown on maize and rice extract agars and on irradiated viable cracked maize and rice grains, either in pure culture or in dual culture with wild strains of either Hyphopichia burtonii or Bacillus amyloliquefaciens. Aflatoxin production by A. flavus and its growth and interactions with the other microorganisms were studied at three water activities (aw) (0.98, 0.95, and 0.90) and two temperatures (25 and 16 degrees C). Both H. burtonii and B. amyloliquefaciens markedly stimulated growth and aflatoxin production by A. flavus on cracked maize, especially at 25 degrees C and 0.95 and 0.98 aw. No aflatoxin was detected in pure cultures of A. flavus on cracked rice after 12 days of incubation at 25 degrees C, but some was produced by mixed cultures at 16 degrees C and 0.98 aw. The morphological interactions among A. flavus, H. burtonii, and B. amyloliquefaciens were also examined on maize and rice extract agars under similar controlled conditions.  相似文献   

12.
R G Cuero  J E Smith    J Lacey 《Applied microbiology》1987,53(5):1142-1146
Aspergillus flavus was grown on maize and rice extract agars and on irradiated viable cracked maize and rice grains, either in pure culture or in dual culture with wild strains of either Hyphopichia burtonii or Bacillus amyloliquefaciens. Aflatoxin production by A. flavus and its growth and interactions with the other microorganisms were studied at three water activities (aw) (0.98, 0.95, and 0.90) and two temperatures (25 and 16 degrees C). Both H. burtonii and B. amyloliquefaciens markedly stimulated growth and aflatoxin production by A. flavus on cracked maize, especially at 25 degrees C and 0.95 and 0.98 aw. No aflatoxin was detected in pure cultures of A. flavus on cracked rice after 12 days of incubation at 25 degrees C, but some was produced by mixed cultures at 16 degrees C and 0.98 aw. The morphological interactions among A. flavus, H. burtonii, and B. amyloliquefaciens were also examined on maize and rice extract agars under similar controlled conditions.  相似文献   

13.
Transformation of sterigmatocystin and O-methylsterigmatocystin (two metabolic aflatoxin precursors) to aflatoxins by aflatoxigenic and nonaflatoxigenic field isolates of Aspergillus flavus was studied. The 24 nonaflatoxigenic isolates investigated failed to transform both precursors. Among the 8 aflatoxin-producing isolates used, 7 transformed both precursors whereas the remaining failed to transform both. According to these results, the usefulness of the measurement of enzymatic activities related to aflatoxin production in understanding the true status of conflictive field isolates is discussed.Abbreviations ST sterigmatocystin - OMST O-methylsterigmatocystin - AFB1 aflatoxin B1 - AFB2 aflatoxin B2 - AFG1 aflatoxin G1 - AFG2 aflatoxin G2 - GM growth medium of Adye and Mateles - RM replacement medium of Adye and Mateles  相似文献   

14.
S ummary : Strains of Aspergillus flavus recently isolated from coconut products were cultured on grated coconut. The aflatoxin content of serial cultures was found to vary significantly with duration of incubation and for some strains to show more than one phase of increase of aflatoxin content. The occurrence of these variations indicates that the study of aflatoxigenic capacity of strains or of the capacity of a medium to support toxin production, should be based upon a knowledge of the pattern of variation of toxin content with duration of incubation of the cultures under the experimental conditions used. Assay of toxin level in a culture after one period of incubation could lead to erroneous conclusions about the identity or quantities of toxin components which the strain is able to produce.  相似文献   

15.
Aims:  The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method.
Methods and Results:  Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus -specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi.
Conclusions:  RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus , with a detection limit of 10 fg.
Significance and Impact of the Study:  Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.  相似文献   

16.
Studies on biological control of aflatoxin production in crops by pre-infection with non-toxigenic Aspergillus flavus strains have created a need for improved methods to screen isolates for aflatoxigenicity. We have evaluated two empirical aflatoxigenicity tests: (i) yellow pigment production, and (ii) the appearance of a plum-red color in colonies exposed to ammonium hydroxide vapor. Yellow pigments from aflatoxigenic A. flavus were shown to function as pH indicator dyes. Seven pigments representing most of the pigmentation in extracts have been isolated using color changes when chromatography spots were exposed to ammonium hydroxide vapor to guide fractionation. Their structures have been shown to be norsolorinic acid, averantin, averufin, versicolorin C, versicolorin A, versicolorin A hemiacetal and nidurufin, all of which are known anthraquinone pigments on, or associated with, the aflatoxin biosynthetic pathway in Aspergillus spp. Thus, the basis of both empirical tests for aflatoxigenicity is detecting production of excess aflatoxin biosynthetic intermediates.  相似文献   

17.
Soybean trypsin inhibitors are thought to ward off pathogens. Studies with aflatoxigenic strains of Aspergillus flavus and A. parasiticus, frequent soybean contaminants, revealed that trypsin inhibitors do not affect the growth of these fungi and aflatoxin production. Further, the availability of zinc, an essential mineral for aflatoxin synthesis that was thought to explain increased aflatoxin accumulation in cooked compared with raw soybeans, was shown to decrease upon cooking. Seed coat integrity, ensuring limited access and a low moisture content, is responsible for the slow colonization of the seed by A. flavus.  相似文献   

18.
Soybean trypsin inhibitors are thought to ward off pathogens. Studies with aflatoxigenic strains of Aspergillus flavus and A. parasiticus, frequent soybean contaminants, revealed that trypsin inhibitors do not affect the growth of these fungi and aflatoxin production. Further, the availability of zinc, an essential mineral for aflatoxin synthesis that was thought to explain increased aflatoxin accumulation in cooked compared with raw soybeans, was shown to decrease upon cooking. Seed coat integrity, ensuring limited access and a low moisture content, is responsible for the slow colonization of the seed by A. flavus.  相似文献   

19.
Sharma YP  Sumbali G 《Mycopathologia》1999,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region.  相似文献   

20.
Detection of aflatoxigenic molds in grains by PCR.   总被引:2,自引:1,他引:2       下载免费PDF全文
Aflatoxins are carcinogenic metabolites produced by several members of the Aspergillus flavus group in grains and floods. Three genes, ver-1, omt-1, and apa-2, coding for key enzymes and a regulatory factor in aflatoxin biosynthesis, respectively, have been identified, and their DNA sequences have been published. In the present study, three primer pairs, each complementing the coding portion of one of the genes, were generated. DNA extracted from mycelia of five Aspergillus species, four Penicillium species, and two Fusarium species was used as PCR template for each of the primer pairs. DNA extracted from peanut, corn, and three insect species commonly found in stored grains was also tested. Positive results (DNA amplification) were achieved only with DNA of the aflatoxigenic molds Aspergillus parasiticus and A. flavus in all three primer pairs. The detection limit of the PCR was determined by using the primer pairs complementing the omt-1 and ver-1 genes. Sterile corn flour was inoculated separately with six different molds, each at several spore concentrations. Positive results were obtained only after a 24-h incubation in enriched media, with extracts of corn inoculated with A. parasiticus or A. flavus, even at the lowest spore concentration applied (10(2) spores per g). No DNA spores per g). It is concluded that genes involved in the aflatoxin biosynthetic pathway may form the basis for an accurate, sensitive, and specific detection system, using PCR, for aflatoxigenic strains in grains and foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号