首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of viral lysis and heterotrophic nanoflagellate (HNF) grazing on bacterial mortality were estimated in a eutrophic lake (Lake Plußsee in northern Germany) which was separated by a steep temperature and oxygen gradient into a warm and oxic epilimnion and a cold and anoxic hypolimnion. Two transmission electron microscopy-based methods (whole-cell examination and thin sections) were used to determine the frequency of visibly infected cells, and a model was used to estimate bacterial mortality due to viral lysis. Examination of thin sections also showed that between 20.2 and 29.2% (average, 26.1%) of the bacterial cells were empty (ghosts) and thus could not contribute to viral production. The most important finding was that the mechanism for regulating bacterial production shifted with depth from grazing control in the epilimnion to control due to viral lysis in the hypolimnion. We estimated that in the epilimnion viral lysis accounted on average for 8.4 to 41.8% of the summed mortality (calculated by determining the sum of the mortalities due to lysis and grazing), compared to 51.3 to 91.0% of the summed mortality in the metalimninon and 88.5 to 94.2% of the summed mortality in the hypolimnion. Estimates of summed mortality values indicated that bacterial production was controlled completely or almost completely in the epilimnion (summed mortality, 66.6 to 128.5%) and the hypolimnion (summed mortality, 43.4 to 103.3%), whereas in the metalimnion viral lysis and HNF grazing were not sufficient to control bacterial production (summed mortality, 22.4 to 56.7%). The estimated contribution of organic matter released by viral lysis of cells into the pool of dissolved organic matter (DOM) was low; however, since cell lysis products are very likely labile compared to the bulk DOM, they might stimulate bacterial production. The high mortality of bacterioplankton due to viral lysis in anoxic water indicates that a significant portion of bacterial production in the metalimnion and hypolimnion is cycled in the bacterium-virus-DOM loop. This finding has major implications for the fate and cycling of organic nutrients in lakes.  相似文献   

2.
Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.  相似文献   

3.
Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.  相似文献   

4.
Viral activity in two contrasting lake ecosystems   总被引:3,自引:0,他引:3  
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.  相似文献   

5.
The purpose of this study was to determine the depth distribution of bacterial biomass and production in a stratified lake and to test techniques to measure bacterial production in anaerobic waters. Bacterial abundance and incorporation of both [3H]thymidine and [3H]leucine into protein were highest in the metalimnion, at the depth at which oxygen first became unmeasurable. In contrast, [3H]thymidine incorporation into DNA was highest in the epilimnion. The ratios of incorporation into DNA/protein averaged 2.2, 0.49, and 0.95 for the epilimnion, metalimnion, and hypolimnion, respectively. Low incorporation into DNA was not due to artifacts associated with the DNA isolation procedure. Recovery of added [3H]DNA was about 90% in waters in which the portion of [3H]thymidine incorporation into DNA was about 40%. At least some obligate anaerobic bacteria were capable of assimilating thymidine since aeration of anaerobic hypolimnion waters substantially inhibited thymidine incorporation. The depth profile of bacterial production estimated from total thymidine and leucine incorporation and the frequency of dividing cells were all similar, with maximal rates in the metalimnion. However, estimates of bacterial production based on frequency of dividing cells and leucine incorporation were usually significantly higher than estimates based on thymidine incorporation (using conversion factors from the literature), especially in anaerobic hypolimnion waters. These data indicate that the thymidine approach must be examined carefully if it is to be applied to aquatic systems with low oxygen concentrations. Our results also indicate that the interface between the aerobic epilimnion and anaerobic hypolimnion is the site of intense bacterial mineralization and biomass production which deserves further study.  相似文献   

6.
Concentrations of viruses and prokaryotes in the alkaline, moderately hypersaline, seasonally stratified Mono Lake are among the highest reported for a natural aquatic environment. We used electron microscopy to test whether viral morphological characteristics differed among the epilimnion, metalimnion, and the anoxic hypolimnion of the lake and to determine how the properties of viruses in Mono Lake compare to other aquatic environments. Viral capsid size distributions were more similar in the metalimnion and hypolimnion of Mono Lake, while viral tail lengths were more similar in the epilimnion and metalimnion. The percentage of tailed viruses decreased with depth and the relative percentages of tailed phage families changed with depth. The presence of large (>125 nm capsid), untailed viruses in the metalimnion and hypolimnion suggests that eukaryotic viruses are produced in these suboxic and anoxic, hypersaline environments. Capsid diameters of viruses were larger on average in Mono Lake compared to other aquatic environments, and no lemon-shaped or filamentous viruses were found, in contrast to other high-salinity or high-altitude lakes and seas. Our data suggest that the physically and chemically distinct layers of Mono Lake harbor different viral assemblages, and that these assemblages are distinct from other aquatic environments that have been studied. Furthermore, we found that filtration of a sample through a 0.22-μm pore-size filter significantly altered the distribution of viral capsid diameters and tail lengths, resulting in a relative depletion of viruses having larger capsids and longer tails. This observation highlights the potential for bias in molecular surveys of viral diversity, which typically rely on filtration through 0.2- or 0.22-μm pore-size membrane filters to remove bacteria during sample preparation.  相似文献   

7.
Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plußsee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i.e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h−1) were higher than those of the entire bacterial community (0.04 to 0.08 h−1) but lower than those of PU7718 (0.26 to 0.31 h−1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically versatile A. hydrophila PU7718 is an r-strategist or opportunistic population in Lake Plußsee, whereas the grazing-resistant C. acidovorans PX54 is rather a K-strategist or equilibrium population.  相似文献   

8.
The coupling between bacteria and heterotrophic nanoflagellates(HNF) was examined in nine lakes of low productivity for evidenceof the effects of various metazooplankton (i.e. rotifers, cladoceransand copepods) on this relationship. We considered the size ofcladocerans and, in contrast to most previous across-systemstudies, the three strata of the water column (i.e. epilimnion,metalimnion and hypolimnion). Rotifers were numerically dominantin all lakes and accounted for 45–84% of total metazooplanktonabundance, while the abundance of large cladocerans was relativelylow, ranging from 0.066 to 15.2 ind. L–1. The across-lakerelationship between bacteria and HNF was significant in thedeeper strata (meta- and hypolimnion) but not in the epilimnionand in the two groups of lakes separated on the basis of theiraverage number of large cladocerans (<5 and >5 ind. L–1,respectively). The results confirmed the negative impacts oflarge cladocerans on HNF, but also showed that rotifers, probablythrough grazing on HNF, may be an important factor causing variationin the bacteria–HNF relationship in unproductive waters.Quadratic models best described the relationships between metazooplanktonand the ratio of bacteria to HNF. This ratio seemed to be aresult of complex interactions between several factors, includingthe zooplankton composition and abundance and the depth of thelake. Indeed, this ratio significantly decreased across lakes,with increase in depth. In addition, shallower lakes (having<5 large cladocerans L–1 and fewer Polyarthra vulgaris)tended to have more bacteria and HNF and a higher ratio of bacteriato HNF than deeper lakes (which had >5 large cladoceransL–1 and substantial proportions of P. vulgaris). We suggestthat the epilimnion, metalimnion and hypolimnion of lakes betaken into account when analysing the bacteria–HNF relationshipas well as the cascading effects of zooplankton on microbialcommunities.  相似文献   

9.
Viral Activity in Two Contrasting Lake Ecosystems   总被引:5,自引:3,他引:5       下载免费PDF全文
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium−1, respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (MPavin = 37.7%, MAydat = 18.5%) was nearly always more than the production removed by viral lysis (MPavin = 16.2%, MAydat = 19%) or ciliate grazing (MPavin = 2.7%, MAydat = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.  相似文献   

10.
Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l?1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.  相似文献   

11.
Bacterial mortality was studied using two complementary methods between 2002 and 2004 in the two main basins (north and south) of Lake Tanganyika. The disappearance of radioactivity from the DNA of natural assemblages of bacteria previously labeled with tritiated thymidine was used to estimate the mortality due to grazing by predators (72%) and due to the cell lysis (28%). Measurements of ingestion rate of bacteria by protozoa using fluorescent micro-particles yielded protozoan grazing rates similar to those provided by the thymidine method, and showed that heterotrophic nano-flagellates were responsible for most of the grazing pressure on the bacterial community of the pelagic zone (92-99%). Bacterial cell lysis was the second process involved in bacterial mortality, ranking before ciliate grazing. Overall, bacterial mortality was balanced with bacterial production. With regard to the assessment of the trophic role of bacteria, it was estimated that c. 5-8% of the organic carbon taken up by bacteria was converted into protozoan biomass and was thus available for metazoans.  相似文献   

12.
The abundance, biomass, and production (Р В) of bacrerioplankton; the taxonomic composition, abundance, biomass of heterotrophic nanoflagellates (HNF) and the rate of consumption of bacteria by HNFs; and the abundance of virioplankton, frequency of visibly infected bacterial cells, virus-induced mortality of bacterioplankton, and viral production were estimated in the mesoeutrophic Rybinsk Reservoir. The rate of bacterial mortality due to viral lysis (7.8–34.1%, on average 17.2 ± 2.0% of daily Р В) was lower than the consumption of bacteria by the HNF community (15.4–61.3%, on average 32.0 ± 4.2% of daily Р В). While consuming bacteria, HNFs simultaneously absorbed a significant number of viruses residing on the surface and inside the bacterial cells.  相似文献   

13.
We have investigated the ecology of viruses in Lake Bourget (France) from January to August 2008. Data were analysed for viral and bacterial abundance and production, viral decay, frequency of lysogenic cells, the contribution of bacteriophages to prokaryotic mortality and their potential influence on nutrient dynamics. Analyses and experiments were conducted on samples from the epilimnion (2 m) and the hypolimnion (50 m), taken at the reference site of the lake. The abundance of virus‐like particles (VLP) varied from 3.4 × 107 to 8.2 × 107 VLP ml?1; with the highest numbers and virus‐to‐bacterium ratio (VBR = 69) recorded in winter. Viral production varied from 3.2 × 104 VLP ml?1 h?1 (July) to 2 × 106 VLP ml?1 h?1 (February and April), and production was lower in the hypolimnion. Viral decay rate reached 0.12–0.15 day?1, and this parameter varied greatly with sampling date and methodology (i.e. KCN versus filtration). Using transmission electron microscopy (TEM) analysis, viral lysis was responsible for 0% (January) to 71% (February) of bacterial mortality, while viral lysis varied between 0% (April) and 53% (January) per day when using a modified dilution approach. Calculated from viral production and burst size, the virus‐induced bacterial mortality varied between 0% (January) and 68% (August). A weak relationship was found between the two first methods (TEM versus dilution approach). Interestingly, flow cytometry analysis performed on the dilution experiment samples revealed that the viral impact was mostly on high DNA content bacterial cells whereas grazing, varying between 8.3% (June) and 75.4% (April), was reflected in both HDNA and LDNA cells equally. The lysogenic fraction varied between 0% (spring/summer) and 62% (winter) of total bacterial abundance, and increased slightly with increasing amounts of mitomycin C added. High percentages of lysogenic cells were recorded when bacterial abundance and activity were the lowest. The calculated release of carbon and phosphorus from viral lysis reached up to 56.5 µgC l?1 day?1 (assuming 20 fgC cell?1) and 1.4 µgP l?1 day?1 (assuming 0.5 fgP cell?1), respectively, which may represent a significant fraction of bacterioplankton nutrient demand. This study provides new evidence of the quantitative and functional importance of the virioplankton in the functioning of microbial food webs in peri‐alpine lakes. It also highlights methodologically dependent results.  相似文献   

14.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

15.
The grazing and lysis mortalities of planktonic bacteria were estimated using the modified dilution method and respiratory quinone (RQ) analysis in mesotrophic Lake Biwa, Japan. The planktonic bacterial assemblages in the lake consisted of various RQ subgroups with different growth and mortality rates. The sum of total bacterial mortalities due to protistan grazing and viral lysis accounted for 96.6 % (range 89.0–107.2 %) of daily total bacterial production. This is the first report that successfully demonstrates a balanced relationship between bacterial production and losses using the modified dilution method in a lake. The growth rates of ubiquinone (UQ)-containing bacteria were faster than those of menaquinone-containing bacteria. Especially the dominant and fastest growing bacterial groups in the present study were the bacterial groups containing UQ-8 or UQ-10. The sum of their production and loss accounted for 60 % of carbon fluxes within the microbial loop. Thus, a large portion of the carbon cycling through the bacterial community in Lake Biwa can be explained by the carbon fluxes through dominant bacterial groups.  相似文献   

16.
The community structure of bacterioplankton was studied at different depths (0 to 25 m) of a temperate eutrophic lake (Lake Plusssee in northern Germany) by using comparative 5S rRNA analysis. The relative amounts of taxonomic groups were estimated from 5S rRNA bands separated by high-resolution electrophoresis. Comparison of partial 5S rRNA sequences enabled detection of changes in single taxa over space and during seasons. Overall, the bacterioplankton community was dominated by 3 to 14 abundant (>4% of the total 5S rRNA) taxa. In general, the number of 5S rRNA bands (i.e., the number of bacterial taxa) decreased with depth. In the fall, when thermal stratification and chemical stratification were much more pronounced than they were in the spring, the correlation between the depth layers and the community structure was more pronounced. Therefore, in the fall each layer had its own community structure; i.e., there were different community structures in the epilimnion, the metalimnion, and the hypolimnion. Only three 5S rRNA bands were detected in the hypolimnion during the fall, and one band accounted for about 70% of the total 5S rRNA. The sequences of individual 5S rRNA bands from the spring and fall were different for all size classes analyzed except two bands, one of which was identified as Comamonas acidivorans. In the overall analysis of the depth profiles, the diversity in the epilimnion contrasted with the reduced diversity of the bacterioplankton communities in the hypolimnion, and large differences occurred in the composition of the epilimnion at different seasons except for generalists like C. acidivorans.  相似文献   

17.
The vertical distributions of bacteria and algae in a steeply stratified, highly humic lake were studied during three 24 h periods in summer. The highest bacterial and algal densities and biomasses were recorded in the anoxic hypolimnion. The bacterial biomass in the hypolimnion was composed mainly of photosynthetic green sulphur bacteria (Chlorobium) which occurred at very low light intensity (< 1.5 μmol m−2 s−1). The numbers and biomasses of bacteria, both in the epilimnion and hypolimnion, were mostly higher at night than during the day, indicating possible asynchrony between the production and loss of bacteria. Because of vertical migration, the diurnal vertical distribution of algae was more variable than that of bacteria. Particularly in July and August, when cryptomonads were abundant, the biomass of algae was much higher in the epilimnion during the day than at night. The flagellated chlorophytes, Chlamydomonas spp. and Scourfieldia cordiformis, stayed mainly in the upper hypolimnion close to the oxic-anoxic boundary zone where only a small proportion of Daphnia longispina was continuously present. Unpalatable Mallomonas chrysophytes with silicified plates and bristles, and small, presumably heterotrophic, flagellates stayed in the oxic epilimnion together with a dense (up to 300 ind l−1) population of D. longispina. The results indicated that, besides the physical and chemical properties of the water column, grazing pressure by Daphnia longispina strongly affected the vertical distribution of microorganisms in this polyhumic lake.  相似文献   

18.
1. In a thermally stratified water column with a deep‐water algal maximum, Daphnia face a trade‐off between food (high fecundity) and temperature (fast development). Recent studies showed that Daphnia populations move up and down the entire water column to take advantage of both, but the proportion of time allocated by individuals to the epilimnion, metalimnion and hypolimnion with their specific food and temperature conditions is not yet known. 2. In a system of 1 m deep, vertical perspex tubes, I established three temperature gradients with 2, 5 and 10 °C differences between the surface (epilimnion) and the bottom layer (hypolimnion). Algae were added to the hypolimnion to simulate a deep‐water algal maximum. 3. The migration behaviour of individual neonate and egg‐bearing Daphnia hyalina × galeata was monitored in order to measure the proportions of time the individuals allocated to the different vertical habitats and to assess the frequency of their shifts between epilimnion and hypolimnion. 4. Neonates stayed continuously at the surface, taking advantage of the higher temperature, possibly because feeding was less important for them because of egg yolk reserves. In contrast, egg‐bearing females spent more time feeding in the hypolimnion when the temperature gradient was weak, but also migrated into the epilimnion to take advantage of the higher temperature. In the steepest temperature gradient, the egg‐bearing females either shifted between epilimnion and hypolimnion, or dwelled constantly in the metalimnion with intermediate conditions.  相似文献   

19.
Population dynamics of bacterioplankton in an oligotrophic lake   总被引:4,自引:0,他引:4  
The population ecology of bacterioplankton was studied overa 3 year period in Mirror Lake, an oligotrophic lake in thenortheastern USA. Bacterial population density, biomass, andrates of biomass production in the epilimnion and hypolimnionwere examined for their relationship with several environmentalparameters. Bacterioplankton density fluctuated between 0.5and 7 x l0 bacteria ml–1, with highest values in the anoxichypolimnion. At all depths there was a trend towards a higherdensity of bacteria from spring to midsummer, followed by adecline in late summer to early autumn. Cocci tended to dominatebacterial cell shapes from winter to midsummer, after whichrod-shaped cells became most abundant. Rod-shaped cells contributedthe most to bacterioplankton biomass at all depths and timesof year. The mean annual biovolume of all bacterioplankton was0.12 µ cell–1. The mean annual areal bacterioplanktonbiomass was 11–12 mmol C m–2. The percentage ofbacterial to phytoplankton biomass per volume in summertimewas 27% in the epilimnion and 11% in the hypolimnion. Averageannual and summertime bacterial production estimated using the[3H]thymidine method was similar to previous estimates of bacterialproduction measured in Mirror Lake using other methods. Theaverage ratio of bacterial to net phytoplankton production pervolume was 0.34 in the epilimnion, and between 0.65 and 1 1.depending on depth, in the hypolimnion during summer. Of severalvariables considered in regression analyses, only temperatureexplained >50% of the variance in bacterial production inboth the hypolimnion and epilimnion. Above 14°C, however,bacterial production and growth rate in the epilimnion werenot clearly related to temperature. During the period of midsummerhypolimnetic anoxia, despite colder temperatures in the hypolimnion,bacterial production was up to 10 times greater than in theepilimnion.  相似文献   

20.
Seasonal population dynamics and the vertical distribution of planktonic ciliates in a hypertrophic and strongly stratified temperate lake were studied from April to October in 2000 and from April to June in 2001. In the epi- and metalimnion the ciliate abundance peaked in spring and late summer, reaching maximum values in the metalimnion (86 cells ml−1) on 7th August 2000. In the epilimnion, the highest biomass content (414 μg C l−1) was observed on 8th May 2000. In the hypolimnion only a late summer peak occurred and the ciliate numbers were always lower than in the epi- and metalimnion. Five groups dominated the community of ciliates: Oligotrichida, Gymnostomatea, Prostomatida, Hymenostomata and Peritrichia, and the community composition varied greatly with depth. In the epilimnion the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and gymnostomes were also numerous. In the metalimnion these groups were gradually replaced by scuticociliates and mixotrophic Coleps spp. In the hypolimnion scuticociliates and species known as benthic migrants dominated. In the epilimnion and upper metalimnion in spring large herbivores and in summer small bacterivores were more numerous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号