首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of l-iditol (iditol) from l-sorbose (sorbose) with d-sorbitol dehydrogenase coupled with NADH regeneration under methanol oxidation was studied with the resting cell system of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201.Maximum activities of iditol production and enzymes concerned with the production were found in cells grown on a medium containing methanol and d-xylose (xylose). The highest amount of iditol, 142–148 g/l (94–98% conversion rate), was obtained from 150 g/l of sorbose in the presence of 0.5 M methanol at pH 6.5. Intermittent control of the pH during the cell reaction gave a significantly higher amount of iditol than that obtained without such control. Freeze-thawing cells showed rather higher productivity than resting cells. The product was identified as iditol without contamination of its C-2 epimer, d-sorbitol, by high performance liquid chromatography.  相似文献   

2.
1. Slices of rat kidney cortex, on incubation in a saline medium, formed d-glucose from the following substances: d-fructose, d-galactose, d-mannose, l-sorbose, l-arabinose, d-xylose, glycerol, myo-inositol, l-iditol, sorbitol, xylitol, ribitol, methylglyoxal, dihydroxyacetone, l-glyceraldehyde, d-glyceraldehyde, dl-glyceraldehyde, dl-glycerate. Values for the rates of glucose formation from these precursors are given. 2. No glucose was formed from l-rhamnose, d-arabitol, d-arabinose, d-ribose, l-fucose, d-lyxose, mannitol, dulcitol, d-glucuronate, propane-1,2-diol and propan-2-ol. 3. The pathways of glucose formation from the various precursors are discussed (Scheme 1). 4. l-Glyceraldehyde inhibited the formation of glucose from d-glyceraldehyde.  相似文献   

3.
G Janbon  F Sherman  E Rustchenko 《Genetics》1999,153(2):653-664
This is the first report that adaptive mutagenesis can arise by chromosomal nondisjunction, a phenomenon previously associated exclusively with DNA alterations. We previously uncovered a novel regulatory mechanism in Candida albicans in which the assimilation of an alternative sugar, l-sorbose, was determined by copy number of chromosome 5, such that monosomic strains utilized l-sorbose, whereas disomic strains did not. We present evidence that this formation of monosomy of chromosome 5, which is apparently a result of nondisjunction, appeared with increased frequencies after a selective condition was applied, i.e., by adaptive mutagenesis. The rate of formation of l-sorbose-utilizing mutants per viable cell per day ranged from 10(-6) at the initial time of detection to 10(-2) after 4 days of incubation on the selective plate.  相似文献   

4.
Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment d-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used.  相似文献   

5.
Candida wickerhamii NRRL Y-2563 expressed beta-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed beta-glucosidase expression (<0.3 U/ml); however, this yeast did produce beta-glucosidase when the initial glucose concentration was 相似文献   

6.
New chromogenic agar medium for the identification of Candida spp   总被引:2,自引:0,他引:2  
A new chromogenic agar medium (Candida diagnostic agar [CDA]) for differentiation of Candida spp. is described. This medium is based on Sabouraud dextrose agar (Oxoid CM41) and contains (per liter) 40.0 g of glucose, 10.0 g of mycological peptone, and 15.0 g of agar along with a novel chromogenic glucosaminidase substrate, ammonium 4-(2-[4-(2-acetamido-2-deoxy-beta-D-glucopyranosyloxy)-3-methoxyphenyl]-vinyl)-1-(propan-3-yl-oate)-quinolium bromide (0.32 g liter(-1)). The glucosaminidase substrate in CDA was hydrolyzed by Candida albicans and Candida dubliniensis, yielding white colonies with deep-red spots on a yellow transparent background after 24 to 48 h of incubation at 37 degrees C. Colonies of Candida tropicalis and Candida kefyr were uniformly pink, and colonies of other Candida spp., including Candida glabrata and Candida parapsilosis, were white. CDA was evaluated by using 115 test strains of Candida spp. and other clinically important yeasts and was compared with two commercially available chromogenic agars (Candida ID agar [bioMerieux] and CHROMagar Candida [CHROMagar Company Ltd.]). On all three agars, colonies of C. albicans were not distinguished from colonies of C. dubliniensis. However, for the group containing C. albicans plus C. dubliniensis, both the sensitivity and the specificity of detection when CDA was used were 100%, compared with values of 97.6 and 100%, respectively, with CHROMagar Candida and 100 and 96.8%, respectively, with Candida ID agar. In addition, for the group containing C. tropicalis plus C. kefyr, the sensitivity and specificity of detection when CDA was used were also 100%, compared with 72.7 and 98.1%, respectively, with CHROMagar Candida. Candida ID agar did not differentiate C. tropicalis and C. kefyr strains but did differentiate members of a broader group (C. tropicalis, C. kefyr, Candida lusitaniae plus Candida guilliermondii); the sensitivity and specificity of detection for members of this group were 94.7 and 93.8%, respectively. In addition to the increased sensitivity and/or specificity of Candida detection when CDA was used, differentiation of colony types on CDA (red spotted, pink, or no color) was unambiguous and did not require precise assessment of colony color.  相似文献   

7.
beta-hydroxypropionaldehyde (3-HPA) can be oxidized to acrylic acid, an industrially important chemical used in the manufacture of synthetic plastics and other polymers. Of 19 genera and 55 strains tested, 3 Klebsiella and 2 Enterobacter strains produced 3-HPA. The most efficient strain was Klebsiella pneumoniae NRRL B-4011. Under optimum conditions (28 degrees C; 40 g of semicarbazide hydrochloride per liter, 70 g of glycerol per liter; and pH 6.0), 3.1 g of B-4011 cells per liter accumulated 22 g of 3-HPA per liter at a specific rate of 0.83 g/g per h; however, 14.5 g of cells per liter accumulated 46 g of 3-HPA per liter at a specific rate of 0.41 g/g per h.  相似文献   

8.
beta-hydroxypropionaldehyde (3-HPA) can be oxidized to acrylic acid, an industrially important chemical used in the manufacture of synthetic plastics and other polymers. Of 19 genera and 55 strains tested, 3 Klebsiella and 2 Enterobacter strains produced 3-HPA. The most efficient strain was Klebsiella pneumoniae NRRL B-4011. Under optimum conditions (28 degrees C; 40 g of semicarbazide hydrochloride per liter, 70 g of glycerol per liter; and pH 6.0), 3.1 g of B-4011 cells per liter accumulated 22 g of 3-HPA per liter at a specific rate of 0.83 g/g per h; however, 14.5 g of cells per liter accumulated 46 g of 3-HPA per liter at a specific rate of 0.41 g/g per h.  相似文献   

9.
Summary Rice straw was used as a lignocellulosic source to provide rich pentose media. By using a well characterized yeast strain,Candida guilliermondii FTI 20037, the hydrolysate obtained was converted to xylitol with an efficiency of 75% and production of 27 g of xylitol per liter in 48 hours. The satisfactory results reported here can be attributed to the low concentrations of toxic components generated throughout the chemical depolymerization of this raw material.  相似文献   

10.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

11.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

12.
The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.  相似文献   

13.
Candida wickerhamii NRRL Y-2563 expressed β-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed β-glucosidase expression (<0.3 U/ml); however, this yeast did produce β-glucosidase when the initial glucose concentration was ≤50 g/liter. When grown aerobically in medium containing glucose plus the above-listed carbon sources, diauxic utilization of the carbon source was observed and the expression of β-glucosidase was glucose repressed. Surprisingly, glucose repression did not occur when the cells were grown anaerobically. When grown anaerobically in medium containing 100 g of glucose per liter, C. wickerhamii produced 6 to 9 U of enzyme per ml and did not demonstrate diauxic utilization of glucose-cellobiose mixtures. To our knowledge, this is the first report of apparent derepression of a glucose-repressed enzyme by anaerobiosis.  相似文献   

14.
The bioconversion of sugars present in wood hemicellulose to 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations was investigated. When K. pneumoniae was grown under finite air conditions in the presence of added acetic acid, 50 g of D-glucose and D-xylose per liter could be converted to 25 and 27 g of butanediol per liter, respectively. The efficiency of bioconversion decreased with increasing sugar substrate concentrations (up to 200 g/liter). Butanediol production at low sugar substrate concentrations was less efficient when the organism was grown under aerobic conditions; however, final butanediol values were higher for cultures grown on an initial sugar concentration of 150 g/liter, particularly when the inoculum was first acclimatized to high sugar levels. When a double fed-batch approach (daily additions of sugars together with yeast extract) was used under aerobic conditions, up to 88 and 113 g of combined butanediol and acetyl methyl carbinol per liter could be obtained from the utilization of 190 g of D-xylose and 226 g of D-glucose per liter, respectively.  相似文献   

15.
The bioconversion of sugars present in wood hemicellulose to 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations was investigated. When K. pneumoniae was grown under finite air conditions in the presence of added acetic acid, 50 g of D-glucose and D-xylose per liter could be converted to 25 and 27 g of butanediol per liter, respectively. The efficiency of bioconversion decreased with increasing sugar substrate concentrations (up to 200 g/liter). Butanediol production at low sugar substrate concentrations was less efficient when the organism was grown under aerobic conditions; however, final butanediol values were higher for cultures grown on an initial sugar concentration of 150 g/liter, particularly when the inoculum was first acclimatized to high sugar levels. When a double fed-batch approach (daily additions of sugars together with yeast extract) was used under aerobic conditions, up to 88 and 113 g of combined butanediol and acetyl methyl carbinol per liter could be obtained from the utilization of 190 g of D-xylose and 226 g of D-glucose per liter, respectively.  相似文献   

16.
A membrane probe was used to monitor the dissolved oxygen concentrations in continuous cultures of Candida utilis and Micrococcus roseus growing at low dissolved oxygen concentrations and various agitation levels. For the yeast fermentations, increasing the agitation level within the range of 0.1 to 0.3 w per liter lowered steady-state dissolved oxygen concentrations in the fermentor. The steady-state dissolved oxygen concentration in the fermentor was not influenced by the agitation level within the range of 0.3 to 1.8 w per liter. With M. roseus, no effect of agitation on steady-state dissolved oxygen concentrations in the fermentor was observed within the range of 0.1 to 1.8 w per liter. It was concluded that, under the conditions used, a measurable transfer barrier from the liquid to the yeast cells existed at agitation levels below 0.3 w per liter and that this barrier did not exist at agitation levels above 0.3 w per liter. The transfer barrier from the liquid to the yeast surface could be represented by a stagnant film of liquid 0.6 × 10-4 cm thick surrounding the cell at an agitation level of 0.10 w per liter. This film represented an oxygen concentration drop of 1.3 × 10-7 M from the bulk of the medium to the cells under the experimental conditions.  相似文献   

17.
Microorganisms which produced n-alkane ω,ω′-dicarboxylic acid (DC) from n-alkane were selected from natural sources. It was found that the best three producers thus obtained belonged to yeast. All of the stock cultures which are able to assimilate n-alkane and are belonged to genus Candida and Pichia were also found to produce DC from n-alkane.

Candida cloacae 310, a representative strain selected from natural source, was able to produce DCs having 5 to 16 carbon atoms from various n-alkanes. Among them, DCs with 5 to 9 carbon atoms were more heavily accumulated than those with more than 9, except those with the same number of carbon atoms as the substrates which were the main products from the substrates with less than 15 carbon atoms. It was also clearly demonstrated that DCs with odd carbons alone were produced from n-alkanes with odd carbons, while DCs with even carbons alone from n-alkanes with even carbons.

Then, cultural conditions of Candida cloacae 310 were studied for the production of DC-12 from n-dodecane (n-C12) which showed the highest yield among the observed accumulation.

Under the optimum conditions, 2.28 g/liter of DC-12 was obtained together with 1.86 g/liter of DC-6 and 0.82 g/liter of DC-8 after 72 hr’ cultivation in a synthetic medium containing 100 ml of n-C12 per liter.  相似文献   

18.
The growth and level of xanthophylls of several representative species of green algae were investigated as a possible source of pigmentation for the egg yolk and broiler markets. Chlorella pyrenoidosa 7-11-05 was selected for fermentation studies because of its high level of xanthophylls and wide temperature range for growth. The heterotrophic metabolism was preferred because of the ease of adaptability to present fermentation equipment. When used as the sole carbon source, glucose was the only sugar, among many tested, that gave appreciable growth in illuminated shaken flasks. A dry cell weight of 90 g per liter and total xanthophylls of 450 mg per liter were obtained from 190 g per liter of glucose monohydrate in 168-hr illuminated shaken flasks. Higher levels of glucose decreased yields. In combination with glucose, monosaccharides, such as fructose and galactose, were readily assimilated. The 7-11-05 strain was adapted to galactose as the sole carbon source after six vegetative passages. Light of the proper intensity and duration stimulated total xanthophylls approximately 35%. The effect on dry cell weight and total xanthophylls of seven antibiotics added at various levels in shaken flasks was studied. Erythromycin was essentially stable throughout the fermentation and nontoxic up to 25 μg/ml, with only slight toxicity at higher levels. Both erythromycin and ristocetin were effective in controlling a high incidence of bacterial contamination in 30-liter fermentors. With the higher agitation and aeration rates possible in 30-liter fermentors, dry cell weights in excess of 100 g per liter and total xanthophylls of 467 to 512 mg per liter were readily obtained from 230 to 260 g per liter of glucose in 162-hr illuminated batch-type fermentations. Continuous-feed runs yielded a dry cell weight of 302 g per liter and total xanthophylls of 650 mg per liter from 520 g per liter of glucose. The type of Chlorella cell produced was an important consideration with respect to the availability of the xanthophylls in pigmenting egg yolks and broilers.  相似文献   

19.
Summary Production of ethanol from cellodextrins, as large as cellohexose, byCandida lusitaniae andC. wickerhamii was studied.C. lusitaniae fermented only glucose and cellobiose, whereasC. wickerhamii efficiently fermented cellodextrins. Maximum ethanol yields of 29.2 g/liter from 54 g/liter cellodextrins were achieved byC. wickerhamii in 3–4 days.  相似文献   

20.
Candida ingens, a pellicle-forming yeast utilizing volatile fatty acids, grew over a pH range of 4.1 to 6.0 on nonsterile supernatants from anaerobically fermented pig wastes; growth was inconsistent between pH 4.1 and 4.6. When ambient temperature above the pellicle was 21°C and the temperature of the medium was 29 to 32°C, a pH range of 4.8 to 5.0 gave yields of 1.90 to 3.31 g of dry matter per liter, and 0.059 to 0.065 mol of volatile fatty acids was utilized per liter. There was no advantage in utilization of volatile fatty acids and yield of dry matter in keeping the pH constant during a 24-h growth period. C. ingens grew at pH 4.8 and 5.0 when both ambient and medium temperatures were 30°C. When ambient temperature was 10°C, maximum yield and utilization of volatile fatty acids occurred at a medium temperature of 28 to 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号