首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes   总被引:8,自引:7,他引:1       下载免费PDF全文
Gut microbiota from Reticulitermes flavipes termites catalyzed an H2-dependent total synthesis of acetate from CO2. Rates of H2-CO2 acetogenesis in vitro were 1.11 ± 0.37 μmol of acetate g (fresh weight)−1 h−1 (equivalent to 4.44 ± 1.47 nmol termite−1 h−1) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H2 + CO2, as were small amounts of propionate, butyrate, and lactate-succinate. However, H2-CO2 formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH4 was formed from H2 + CO2 or from acetate. H2-CO2 acetogenesis was inhibited by O2, KCN, CHCl3, and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H2-CO2 acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H2-CO2 acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H2-CO2-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO2 reduction to acetate, rather than to CH4, represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   

2.
The symbiotic digestion of lignocellulose in the hindgut of the wood-feeding termite Reticulitermes flavipes is characterized by two major metabolic pathways: (i) the oxidation of polysaccharides to acetate by anaerobic hydrogen-producing protozoa; and (ii) the reduction of CO2 by hydrogenotrophic acetogenic bacteria. Both reactions together would render the hindgut largely homoacetogenic. However, the results of this study show that the situation is more complex. By microinjection of radiolabelled metabolites into intact agarose-embedded hindguts, we showed that the in situ rates of reductive acetogenesis (3.3 nmol termite(-1) h(-1)) represent only 10% of the total carbon flux in the living termite, whereas 30% of the carbon flux proceeds via lactate. The rapid turnover of the lactate pool (7.2 nmol termite(-1) h(-1)) consolidates the previously reported presence of lactic acid bacteria in the R. flavipes hindgut and the low lactate concentrations in the hindgut fluid. However, the immediate precursor of lactate remains unknown; the low turnover rates of injected glucose (< 0.5 nmol termite(-1) h(-1)) indicate that free glucose is not an important intermediate under in situ conditions. The influence of the incubation atmosphere on the turnover rate and the product pattern of glucose and lactate confirmed that the influx of oxygen via the gut epithelium and its reduction in the hindgut periphery have a significant impact on carbon and electron flow within the hindgut microbial community. The in situ rates of reductive acetogenesis were not significantly affected by the presence of oxygen or exogenous H2, which is in agreement with a localization of homoacetogens in the anoxic gut lumen rather than in the oxic periphery. This adds strong support to the hypothesis that the co-existence of methanogens and homoacetogens in this termite is based on the spatial arrangement of the different populations of the gut microbiota. A refined model of metabolic fluxes in the hindgut of R. flavipes is presented.  相似文献   

3.
It has been shown that the coexistence of methanogenesis and reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes is based largely on the radial distribution of the respective microbial populations and relatively high hydrogen partial pressures in the gut lumen. Using Clark-type microelectrodes, we showed that the situation in Cubitermes orthognathus and other soil-feeding members of the subfamily Termitinae is different and much more complex. All major compartments of agarose-embedded hindguts were anoxic at the gut center, and high H(2) partial pressures (1 to 10 kPa) in the alkaline anterior region rendered the mixed segment and the third proctodeal segment (P3) significant sources of H(2). Posterior to the P3 segment, however, H(2) concentrations were generally below the detection limit (<100 Pa). All hindgut compartments turned into efficient hydrogen sinks when external H(2) was supplied, but methane was formed mainly in the P3/4a and P4b compartments, and in the latter only when H(2) or formate was added. Addition of H(2) to the gas headspace stimulated CH(4) emission of living termites, indicating that endogenous H(2) production limits methanogenesis also in vivo. At the low H(2) partial pressures in the posterior hindgut, methanogens would most likely outcompete homoacetogens for this electron donor. This might explain the apparent predominance of methanogenesis over reductive acetogenesis in the hindgut of soil-feeding termites, although the presence of homoacetogens in the anterior, highly alkaline region cannot yet be excluded. In addition, the direct contact of anterior and posterior hindgut compartments in situ permits a cross-epithelial transfer of H(2) or formate, which would not only fuel methanogenesis in these compartments, but would also create favorable microniches for reductive acetogenesis. In situ rates and spatial distribution of H(2)-dependent acetogenic activities are addressed in a companion paper (A. Tholen and A. Brune, Appl. Environ. Microbiol. 65:4497-4505, 1999).  相似文献   

4.
Methanogenesis and homoacetogenesis occur simultaneously in the hindguts of almost all termites, but the reasons for the apparent predominance of methanogenesis over homoacetogenesis in the hindgut of the humivorous species is not known. We found that in gut homogenates of soil-feeding Cubitermes spp., methanogens outcompete homoacetogens for endogenous reductant. The rates of methanogenesis were always significantly higher than those of reductive acetogenesis, whereas the stimulation of acetogenesis by the addition of exogenous H(2) or formate was more pronounced than that of methanogenesis. In a companion paper, we reported that the anterior gut regions of Cubitermes spp. accumulated hydrogen to high partial pressures, whereas H(2) was always below the detection limit (<100 Pa) in the posterior hindgut, and that all hindgut compartments turned into efficient H(2) sinks when external H(2) was provided (D. Schmitt-Wagner and A. Brune, Appl. Environ. Microbiol. 65:4490-4496, 1999). Using a microinjection technique, we found that only the posterior gut sections P3/4a and P4b, which harbored methanogenic activities, formed labeled acetate from H(14)CO(3)(-). Enumeration of methanogenic and homoacetogenic populations in the different gut sections confirmed the coexistence of both metabolic groups in the same compartments. However, the in situ rates of acetogenesis were strongly hydrogen limited; in the P4b section, no activity was detected unless external H(2) was added. Endogenous rates of reductive acetogenesis in isolated guts were about 10-fold lower than the in vivo rates of methanogenesis, but were almost equal when exogenous H(2) was supplied. We conclude that the homoacetogenic populations in the posterior hindgut are supported by either substrates other than H(2) or by a cross-epithelial H(2) transfer from the anterior gut regions, which may create microniches favorable for H(2)-dependent acetogenesis.  相似文献   

5.
A. Ebert  A. Brune 《Applied microbiology》1997,63(10):4039-4046
Molecular hydrogen is a key intermediate in lignocellulose degradation by the microbial community of termite hindguts. With polarographic, Clark-type H(inf2) microelectrodes, we determined H(inf2) concentrations at microscale resolution in the gut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Axial H(inf2) concentration profiles obtained from isolated intestinal tracts embedded in agarose Ringer solution clearly identified the voluminous hindgut paunch as the site of H(inf2) production. The latter was strictly coupled with both a low redox potential (E(infh) = -200 mV) and the absence of oxygen, in agreement with the growth requirements of the cellulolytic, H(inf2)-producing flagellates located in the hindgut paunch. Luminal H(inf2) partial pressures were much higher than expected (ca. 5 kPa) and increased more than threefold when the guts were incubated under a N(inf2) headspace. Radial H(inf2) concentration gradients showed a steep decrease from the gut center towards the periphery, indicating the presence of H(inf2)-consuming activities both within the lumen and at the gut epithelium. Measurements under controlled gas headspace showed that the gut wall was also a sink for externally supplied H(inf2), both under oxic and anoxic conditions. With O(inf2) microelectrodes, we confirmed that the H(inf2) sink below the gut epithelium is located within the microoxic gut periphery, but the H(inf2)-consuming activity itself, at least a substantial part of it, was clearly due to an anaerobic process. These results are in accordance with the recently reported presence of methanogens attached in large numbers to the luminal side of the hindgut epithelium of R. flavipes. If the oxygen partial pressure was increased, O(inf2) penetrated deeper and H(inf2) production was suppressed; it ceased completely as soon as the gut was fully oxic. In experiments with living termites, externally supplied H(inf2) (20 kPa) stimulated methane formation five- to sixfold to 0.93 (mu)mol (g of termite)(sup-1) h(sup-1), indicating that the methanogenic activity in R. flavipes hindguts is not saturated for hydrogen under in situ conditions. This rate was in good agreement with the H(inf2) uptake rates exhibited by isolated hindguts, which would account for more than half of the CH(inf4) formed by living termites under comparable conditions.  相似文献   

6.
Lactic acid bacteria have been identified as typical and numerically significant members of the gut microbiota of Reticulitermes flavipes and other wood-feeding lower termites. We found that also in the guts of the higher termites Nasutitermes arborum (wood-feeding), Thoracotermes macrothorax, and Anoplotermes pacificus (both soil-feeding), lactic acid bacteria represent the largest group of culturable carbohydrate-utilizing bacteria (3.6-5.2x10(4) bacteria per gut; 43%-54% of all colonies). All isolates were coccoid and phenotypically difficult to distinguish, but their enterobacterial repetitive intergenic consensus sequence (ERIC) fingerprint patterns showed a significant genetic diversity. Six different genotypes each were identified among the isolates from R. flavipes and T. macrothorax, and representative strains were selected for further characterization. By 16S rRNA gene sequence analysis, strain RfL6 from R. flavipes was classified as a close relative of Enterococcus faecalis, whereas strain RfLs4 from R. flavipes and strain TmLO5 from T. macrothorax were closely related to Lactococcus lactis. All strains consumed oxygen during growth on glucose and cellobiose; oxygen consumption of these and other isolates from both termite species was due to NADH and pyruvate oxidase activities, but did not result in H2O2 formation. In order to assess the significance of the isolates in the hindgut, denaturing gradient gel electrophoresis was used to compare the fingerprints of 16S rRNA genes in the bacterial community of R. flavipes with those of representative isolates. The major DNA band from the hindgut bacterial community was further separated by bisbenzimide-polyethylene glycol electrophoresis, and the two resulting bands were sequenced. Whereas one sequence belonged to a spirochete, the second sequence was closely related to the sequences of the Lactococcus strains RfLs4 and TmLO5. Apparently, those isolates represent strains of a new Lactococcus species which forms a significant fraction of the complex hindgut community of the lower termite R. flavipes and possibly also of other termites.  相似文献   

7.
In the intestinal tracts of animals, methanogenesis from CO(2) and other C(1) compounds strictly depends on the supply of electron donors by fermenting bacteria, but sources and sinks of reducing equivalents may be spatially separated. Microsensor measurements in the intestinal tract of the omnivorous cockroach Blaberus sp. showed that molecular hydrogen strongly accumulated in the midgut (H(2) partial pressures of 3 to 26 kPa), whereas it was not detectable (<0.1 kPa) in the posterior hindgut. Moreover, living cockroaches emitted large quantities of CH(4) [105 +/- 49 nmol (g of cockroach)(-1) h(-1)] but only traces of H(2). In vitro incubation of isolated gut compartments, however, revealed that the midguts produced considerable amounts of H(2), whereas hindguts emitted only CH(4) [106 +/- 58 and 71 +/- 50 nmol (g of cockroach)(-1) h(-1), respectively]. When ligated midgut and hindgut segments were incubated in the same vials, methane emission increased by 28% over that of isolated hindguts, whereas only traces of H(2) accumulated in the headspace. Radial hydrogen profiles obtained under air enriched with H(2) (20 kPa) identified the hindgut as an efficient sink for externally supplied H(2). A cross-epithelial transfer of hydrogen from the midgut to the hindgut compartment was clearly evidenced by the steep H(2) concentration gradients which developed when ligated fragments of midgut and hindgut were placed on top of each other-a configuration that simulates the situation in vivo. These findings emphasize that it is essential to analyze the compartmentalization of the gut and the spatial organization of its microbiota in order to understand the functional interactions among different microbial populations during digestion.  相似文献   

8.
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities.  相似文献   

9.
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of ‘termite gut treponemes’ from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse ‘termite cluster I', a deep-branching sister group of Treponemataceae (fam. ‘Termitinemataceae’) that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.  相似文献   

10.
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.  相似文献   

11.
Growth of Methanosarcina sp. strain 227 and Methanosarcina mazei on H(2)-CO(2) and mixtures of H(2)-CO(2) and acetate or methanol was examined. The growth yield of strain 227 on H(2)-CO(2) in complex medium was 8.4 mg/mmol of methane produced. Growth in defined medium was characteristically slower, and cell yields were proportionately lower. Labeling studies confirmed that CO(2) was rapidly reduced to CH(4) in the presence of H(2), and little acetate was used for methanogenesis until H(2) was exhausted. This resulted in a biphasic pattern of growth similar to that reported for strain 227 grown on methanol-acetate mixtures. Biphasic growth was not observed in cultures on mixtures of H(2)-CO(2) and methanol, and less methanol oxidation occurred in the presence of H(2). In M. mazei the aceticlastic reaction was also inhibited by the added H(2), but since the cultures did not immediately metabolize H(2), the duration of the inhibition was much longer.  相似文献   

12.
高效降解木质纤维素的白蚁肠道微生物组   总被引:2,自引:0,他引:2  
李丹红  王誉  杨红 《微生物学报》2017,57(6):876-884
木食性白蚁是自然界木质纤维素的高效降解者,在长期进化过程中白蚁与其肠道微生物组协同作用发展出不同的纤维素降解机制。木食性白蚁具有分别来源于白蚁和共生微生物的两套纤维素酶系统。在低等白蚁中,木质颗粒经过白蚁前、中肠分泌的内源性酶初步消化后,在后肠共生鞭毛虫中被降解为乙酸、二氧化碳和氢。高等木食性白蚁在进化中丢失了鞭毛虫,木质颗粒经白蚁自身分泌的酶初步消化后,在后肠大量共生细菌的帮助下被有效降解。培菌类白蚁利用其菌圃中的蚁巢伞菌和肠道微生物协同作用降解木质纤维素。共生微生物在白蚁的氮素固定与循环、中间产物代谢及纤维素降解等过程中发挥了重要作用。学习和模拟白蚁高效降解木质纤维素的体系,对生物质能源的产业化发展具有积极的意义。  相似文献   

13.
Higher termites are characterized by a purely prokaryotic gut microbiota and an increased compartmentation of their intestinal tract. In soil-feeding species, each gut compartment has different physicochemical conditions and is colonized by a specific microbial community. Although considerable information has accumulated also for wood-feeding species of the genus Nasutitermes, including cellulase activities and metagenomic data, a comprehensive study linking physicochemical gut conditions with the structure of the microbial communities in the different gut compartments is lacking. In this study, we measured high-resolution profiles of H(2), O(2), pH, and redox potential in the gut of Nasutitermes corniger termites, determined the fermentation products accumulating in the individual gut compartments, and analyzed the bacterial communities in detail by pyrotag sequencing of the V3-V4 region of the 16S rRNA genes. The dilated hindgut paunch (P3 compartment) was the only anoxic gut region, showed the highest density of bacteria, and accumulated H(2) to high partial pressures (up to 12 kPa). Molecular hydrogen is apparently produced by a dense community of Spirochaetes and Fibrobacteres, which also dominate the gut of other Nasutitermes species. All other compartments, such as the alkaline P1 compartment (average pH, 10.0), showed high redox potentials and comprised small but distinct populations characteristic for each gut region. In the crop and the posterior hindgut compartments, the community was even more diverse than in the paunch. Similarities in the communities of the posterior hindgut and crop suggested that proctodeal trophallaxis or coprophagy also occurs in higher termites. The large sampling depths of pyrotag sequencing in combination with the determination of important physicochemical parameters allow cautious conclusions concerning the functions of particular bacterial lineages in the respective gut sections to be drawn.  相似文献   

14.
When grown in the absence of added sulfate, cocultures of Desulfovibrio desulfuricans or Desulfovibrio vulgaris with Methanobrevibacter smithii (Methanobacterium ruminantium), which uses H(2) and CO(2) for methanogenesis, degraded lactate, with the production of acetate and CH(4). When D. desulfuricans or D. vulgaris was grown in the absence of added sulfate in coculture with Methanosarcina barkeri (type strain), which uses both H(2)-CO(2) and acetate for methanogenesis, lactate was stoichiometrically degraded to CH(4) and presumably to CO(2). During the first 12 days of incubation of the D. desulfuricans-M. barkeri coculture, lactate was completely degraded, with almost stoichiometric production of acetate and CH(4). Later, acetate was degraded to CH(4) and presumably to CO(2). In experiments in which 20 mM acetate and 0 to 20 mM lactate were added to D. desulfuricans-M. barkeri cocultures, no detectable degradation of acetate occurred until the lactate was catabolized. The ultimate rate of acetate utilization for methanogenesis was greater for those cocultures receiving the highest levels of lactate. A small amount of H(2) was detected in cocultures which contained D. desulfuricans and M. barkeri until after all lactate was degraded. The addition of H(2), but not of lactate, to the growth medium inhibited acetate degradation by pure cultures of M. barkeri. Pure cultures of M. barkeri produced CH(4) from acetate at a rate equivalent to that observed for cocultures containing M. barkeri. Inocula of M. barkeri grown with H(2)-CO(2) as the methanogenic substrate produced CH(4) from acetate at a rate equivalent to that observed for acetate-grown inocula when grown in a rumen fluid-vitamin-based medium but not when grown in a yeast extract-based medium. The results suggest that H(2) produced by the Desulfovibrio species during growth with lactate inhibited acetate degradation by M. barkeri.  相似文献   

15.
Clark-type oxygen microelectrodes and glass pH microelectrodes, each with a tip diameter of <=10 (mu)m, were used to obtain high-resolution profiles of oxygen concentrations and pH values in isolated termite guts. Radial oxygen profiles showed that oxygen penetrated into the peripheral hindgut contents up to about 150 to 200 (mu)m below the epithelial surface in both the lower termite Reticulitermes flavipes (Kollar) and the higher termite Nasutitermes lujae (Wasmann). Only the central portions (comprising less than 40% of the total volume) of the microbe-packed, enlarged hindgut compartments ("paunches") were completely anoxic, indicating that some members of the hindgut microbiota constitute a significant oxygen sink. From the slopes of the oxygen gradients, we estimated that the entire paunches (gut tissue plus resident microbiota) of R. flavipes and N. lujae accounted for 21 and 13%, respectively, of the respiratory activity of the intact animals. Axial oxygen profiles also confirmed that in general, only the paunches were anoxic in their centers, whereas midguts and posterior hindgut regions contained significant amounts of oxygen (up to about 50 and 30% air saturation, respectively). A remarkable exception to this was the posterior portion of an anterior segment (the P1 segment) of the hindgut of N. lujae, which was completely anoxic despite its small diameter ((apprx=)250 (mu)m). Axial pH profiles of the guts of Nasutitermes nigriceps (Haldeman) and Microcerotermes parvus (Haviland) revealed that there were extreme shifts as we moved posteriorly from the midgut proper (pH (apprx=)7) to the P1 segment of the hindgut (pH >10) and then to the P3 segment (paunch; pH (apprx=)7). The latter transition occurred at the short enteric valve (P2 segment) and within a distance of less than 500 (mu)m. In contrast, R. flavipes, which lacks a readily distinguishable P1 segment, did not possess a markedly alkaline region, and the pH around the midgut-hindgut junction was circumneutral. The oxic status of the peripheral hindgut lumen and its substantial oxygen consumption, together with previous reports of large numbers of aerobic and facultatively anaerobic bacteria in the hindgut microflora, challenge the notion that termite hindguts are a purely anoxic environment and, together with the steep axial pH gradients in higher termites, refine our concept of this tiny microbial habitat.  相似文献   

16.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

17.
The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.  相似文献   

18.
We previously described a thermophilic (60 degrees C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H(2) and CO(2). While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shaped bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When the axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH(4). The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H(2)-CO(2) as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H(2)-CO(2), demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H(2), was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.  相似文献   

19.
A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and (14)CH(4) added to the air headspace over live termites was not converted to (14)CO(2). Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detect pmoA, the marker gene for particulate methane monooxygenase, in hindgut DNA extracts of all termites investigated. This adds robustness to our concept of the degradation network in the termite hindgut and eliminates the gut itself as a potential sink of this important greenhouse gas.  相似文献   

20.
Methanogenesis and homoacetogenesis occur simultaneously in the hindguts of almost all termites, but the reasons for the apparent predominance of methanogenesis over homoacetogenesis in the hindgut of the humivorous species is not known. We found that in gut homogenates of soil-feeding Cubitermes spp., methanogens outcompete homoacetogens for endogenous reductant. The rates of methanogenesis were always significantly higher than those of reductive acetogenesis, whereas the stimulation of acetogenesis by the addition of exogenous H2 or formate was more pronounced than that of methanogenesis. In a companion paper, we reported that the anterior gut regions of Cubitermes spp. accumulated hydrogen to high partial pressures, whereas H2 was always below the detection limit (<100 Pa) in the posterior hindgut, and that all hindgut compartments turned into efficient H2 sinks when external H2 was provided (D. Schmitt-Wagner and A. Brune, Appl. Environ. Microbiol. 65:4490–4496, 1999). Using a microinjection technique, we found that only the posterior gut sections P3/4a and P4b, which harbored methanogenic activities, formed labeled acetate from H14CO3. Enumeration of methanogenic and homoacetogenic populations in the different gut sections confirmed the coexistence of both metabolic groups in the same compartments. However, the in situ rates of acetogenesis were strongly hydrogen limited; in the P4b section, no activity was detected unless external H2 was added. Endogenous rates of reductive acetogenesis in isolated guts were about 10-fold lower than the in vivo rates of methanogenesis, but were almost equal when exogenous H2 was supplied. We conclude that the homoacetogenic populations in the posterior hindgut are supported by either substrates other than H2 or by a cross-epithelial H2 transfer from the anterior gut regions, which may create microniches favorable for H2-dependent acetogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号