首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transport and utilization of malic acid by the yeast Hansenula anomala are subject to glucose repression. Derepressed diploid mutant strains were obtained by hybridization of derepressed haploid mutant strains of opposite mating type. Six diploid mutant strains displayed derepressed behaviour with respect to malic acid utilization in the presence of glucose up to 30% (w/v). Three of these diploid mutant strains, as compared with the parent strain, were able to degrade completely malic acid in grape juice without fermenting the sugars. In addition, using one diploid mutant strain together with a strain of the wine yeast Saccharomyces cerevisiae, it was possible to carry out a mixedmicrovinification in which deacidification occurred simultaneously with alcoholic fermentation.  相似文献   

2.
Summary Many mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glycerol as a carbon source were induced from Aspergillus niger WU-2223L, a citric acid-producing strain. The mutant strains were classifiable into two types according to their growth characteristics. On the agar plates containing glucose as a sole carbon source, mutant strains of the first type showed good growth irrespective of the presence or absence of DG. When cultivated in shake cultures, some strains of the first type, such as DGR1–2, showed faster glucose consumption and growth than strain WU-2223L. The period for citric acid production shortened from 9 days for strain WU-2223L to 6–7 days for these mutant strains. The levels and yields of citric acid production of the mutant strains were almost the same as those of strain WU-2223L. The mutant strains of the second type, however, showed very slow or no growth on both the agar plates containing glucose and fructose as sole carbon sources. In shake cultures, mutant strains such as DGR2-8 showed decreased glucose consumption rates, resulting in very low production of citric acid.  相似文献   

3.
The effects of reduced efficiency of proton-motive force (pmf) generation on glucose metabolism were investigated in Escherichia coli respiratory-chain mutants. The respiratory chain of E. coli consists of two NADH dehydrogenases and three terminal oxidases, all with different abilities to generate a pmf. The genes for isozymes with the highest pmf-generating capacity (NADH dehydrogenase-1 and cytochrome bo? oxidase) were knocked out singly or in combination, using a wild-type strain as the parent. Analyses of glucose metabolism by jar-fermentation revealed that the glucose consumption rate per cell increased with decreasing efficiency of pmf generation, as determined from the growth parameters of the mutants. The highest rate of glucose metabolism was observed in the double mutant, and the lowest was observed in the wild-type strain. The respiration rates of the single-knockout mutants were comparable to that of the wild-type strain, and that of the double mutant was higher, apparently as a result of the upregulation of the remaining respiratory chain enzymes. All of the strains excreted 2-oxoglutaric acid as a product of glucose metabolism. Additionally, all of the mutants excreted pyruvic acid and/or acetic acid. Interestingly, the double mutant excreted L-glutamic acid. Alterations of the fermentation profiles provide clues regarding the metabolic regulation in each mutant.  相似文献   

4.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

5.
Citric acid production from cellobiose by Aspergillus niger was studied by a semi-solid culture method using bagasse as a carrier. From the parental strain Yang no. 2, mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glucose as a carbon source were induced. The representative mutant strain M155 was selected and subjected to further mutation. The new series of mutant strains showing resistance to DG on minimal medium containing cellobiose as a carbon source was induced, and among them the best mutant strain C192 showed higher citric acid productivity than Yang no. 2 in semi-solid culture when glucose was used as a carbon source. Moreover, in semi-solid culture, the strain C192 produced 49.6 g/l of citric acid, 1.6 times as much citric acid as Yang no. 2 produced, from 100 g cellobiose/l and showed enhanced -glucosidase production. In shake culture, the extracellular -glucosidase activity of C192 was higher than that of Yang no. 2 when not only cellobiose but also glucose and glycerol, catabolite repressors, were used as a carbon source. These results indicate that mutant strains such as C192 are insensitive to catabolite repression. Correspondence to: S. Usami  相似文献   

6.
In contrast with wild-type Salmonella typhimurium LT2, strain HfrA did not have ATP-driven energy-dependent transhydrogenase activity, although ATP-dependent quenching of atebrin fluorescence was normal. Respiration-dependent and energy-independent transhydrogenase, and Ca2+-activated ATPase (adenosine triphosphatase) activities were similar in both strains. Purified ATPases from the two strains had similar specific activities, similar subunit polypeptides, and were equally effective in restoring energy-dependent transhydrogenase activities to membrane particles of strain LT2 from which the ATPase had been stripped. The purified ATPases from both strains could restore respiration-dependent but not ATP-dependent transhydrogenation to stripped particles of strain HfrA. Both strains grew aerobically equally well on salts media containing glucose, malate, succinate, citrate, acetate, pyruvate, fumarate, lactate or aspartate as substrates. Growth on glucose under anaerobic conditions was similar. Strains LT2 and HfrA were equally effective in the accumulation under both aerobic and anaerobic conditions of the amino acids proline, phenylalanine, histidine, lysine, isoleucine and aspartic acid. Inhibition of amino acid accumulation by KCN and dicyclohexylcarbodi-imide occurred to the same extent in both strains. The complete inhibition by dicyclohexylcarbodi-imide of amino acid uptake under anaerobic conditions suggested that ATP could drive amino acid uptake in both strains. The ability of strain HfrA to carry out ATP-dependent transport or quenching of atebrin fluorescence but not ATP-dependent transhydrogenation is different from the wild-type strain and from any previously described energy-coupling mutant. It is difficult to reconcile the properties of this mutant with the chemiosmotic hypothesis.  相似文献   

7.
A mutant of Candida albicans ATCC 10261 was isolated that was defective in the production of beta-N-acetylglucosaminidase (chitobiase). The mutant grew normally in minimal medium supplemented with either glucose or N-acetyl-D-glucosamine (GlcNAc) as carbon and energy source, and the cells formed germ-tubes at 37 degrees C when induced to do so with GlcNAc. However, unlike the wild-type parent strain, the mutant strain did not utilize N,N'-diacetylchitobiose for growth. The mutant and parent strains had similar growth rates on glucose or GlcNAc, similar rates of uptake of these sugars and similar rates of 14C-labelled amino acid incorporation. The chitobiase mutant did, however, contain 53-85% more chitin than the wild-type strain. No reversion of the mutant phenotype was observed following induction of mitotic recombination with UV light, suggesting that the mutant allele (chi) was carried homozygously in the chitobiase-deficient mutant. Although the chitobiase-deficient mutant was pathogenic, it was not as virulent as the wild-type strain.  相似文献   

8.
A mutant of Corynebacterim glutamicum ('Brevibacterium flayum') ATCC14067 with a reduced H+-ATPase activity, F172-8, was obtained as a spontaneous neomycin-resistant mutant. The ATPase activity of strain F172-8 was reduced to about 25% of that of the parental strain. Strain F172-8 was cultured in a glutamic-acid fermentation medium containing 100 g/l of glucose using ajar fermentor. It was found that glucose consumption per cell during the exponential phase was higher by 70% in the mutant than in the parent. The respiration rate per cell of the mutant also increased to twice as much as that of the parent. However, the growth rate of the mutant was lower than that of the parent. Under those conditions, the parent produced more than 40 g/l glutamic acid, while the mutant hardly produced any glutamic acid. Instead the mutant produced 24.6 g/l lactic acid as the main metabolite of glucose. Remarkably, the accumulation of pyruvate and pyruvate-family amino acids, i.e., alanine and valine, was detected in the mutant. On the other hand, the parent accumulated alpha-ketoglutaric acid and a glutamate-family amino acid, proline, as major by-products. It was concluded that the decrease in the H+-ATPase activity caused the above-mentioned metabolic changes in strain F172-8, because a revertant of strain F172-8, R2-1, with a H+-ATPase activity of 70% of that of strain ATCC14067, showed a fermentation profile similar to that of the parent. Sequence analyses of the atp operon genes of these strains identified one point mutation in the gamma subunit in strain F172-8.  相似文献   

9.
L-谷氨酸温度敏感突变株的选育   总被引:2,自引:0,他引:2  
采用黄色短杆菌TJ1为出发菌株,根据代谢控制发酵原理,利用紫外线、硫酸二乙酯进行诱变,定向选育出具有寡霉素抗性、谷氨酸氧肟酸盐抗性的温度敏感突变株TMGO106。然后,以温度敏感突变株TMGO106和产酸率高(10.5%以上)的天津短杆菌TG961为新株,通过原生质体融合技术,成功地选育出了产酸率高的融合子CN1021(13.6g/dl,糖酸转化率达60%),在6m^3发酵罐上中试其L-谷氨酸产量达14.6%,糖酸转化率达62.8%,并且该菌株系温度敏感型菌株,可用于谷氨酸强度发酵。  相似文献   

10.
A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains.  相似文献   

11.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

12.
Fermentation of glucose to D-lactic acid under aerobic growth conditions by an evolved Escherichia coli mutant deficient in three terminal oxidases is reported in this work. Cytochrome oxidases (cydAB, cyoABCD, and cbdAB) were removed from the E. coli K12 MG1655 genome, resulting in the ECOM3 (E. coli cytochrome oxidase mutant) strain. Removal of cytochrome oxidases reduced the oxygen uptake rate of the knockout strain by nearly 85%. Moreover, the knockout strain was initially incapable of growing on M9 minimal medium. After the ECOM3 strain was subjected to adaptive evolution on glucose M9 medium for 60 days, a growth rate equivalent to that of anaerobic wild-type E. coli was achieved. Our findings demonstrate that three independently adaptively evolved ECOM3 populations acquired different phenotypes: one produced lactate as a sole fermentation product, while the other two strains exhibited a mixed-acid fermentation under oxic growth conditions with lactate remaining as the major product. The homofermenting strain showed a D-lactate yield of 0.8 g/g from glucose. Gene expression and in silico model-based analyses were employed to identify perturbed pathways and explain phenotypic behavior. Significant upregulation of ygiN and sodAB explains the remaining oxygen uptake that was observed in evolved ECOM3 strains. E. coli strains produced in this study showed the ability to produce lactate as a fermentation product from glucose and to undergo mixed-acid fermentation during aerobic growth.  相似文献   

13.
14.
A mutant strain of the bacterium Pseudomonas sp. ATCC 31461 that exhibited elevated production of the polysaccharide gellan on glucose or corn syrup as a carbon source was isolated. Gellan production by the mutant strain was about twofold higher than its parent strain on glucose or corn syrup after 48 h of growth, and about 1.4-fold higher after 72 h. An increase in biomass production was not correlated with enhanced gellan synthesis by the mutant strain. The increased gellan production by the mutant strain on either carbon source resulted in an increase in its culture medium viscosity and the viscosity of the isolated polysaccharide produced by glucose-grown cells. No differences in the glucuronic acid content of the polysaccharides produced by the mutant and parent strains were observed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 185–188 doi:10.1038/sj.jim.7000278 Received 13 February 2002/ Accepted in revised form 20 May 2002  相似文献   

15.
16.
13C NMR was used to study the pattern of label incorporation from [2-13C]acetate into trehalose during sporulation in Saccharomyces cerevisiae. A wild-type strain and a strain homozygous for the zwf1 mutation (which affects glucose-6-phosphate dehydrogenase) were used. In the wild-type it was possible to deduce the cycling of glucose 6-phosphate around the hexose monophosphate pathway whilst in the mutant strain this did not occur. The requirement of the hexose monophosphate pathway for providing NADPH for fatty acid biosynthesis was examined using 13C NMR and GC/MS. The wild-type strain produced a typical profile of fatty acids with palmitoleic acid being the most abundant whereas the mutant contained only one-quarter the amount of total fatty acid. As zwf1 homozygous diploids are able to sporulate this indicates that the large amount of fatty acid biosynthesis observed in sporulation of wild-type strains is not essential to the process.  相似文献   

17.
A study was performed to understand the physiology and biochemical mechanism of citric acid accumulation during solid state fermentation of sweet potato using Aspergillus niger Yang No.2. A low citrate-producing mutant was isolated followed by a comparative study of the fermentation process and selected physiological and biochemical parameters. In contrast with the parent strain, the mutant strain displayed lower concentrations, yields and production rates of citric acid, accompanied by higher concentrations, yields and production rates of oxalic acid. In addition, the mutant utilized starch at a lower rate although higher concentrations of free glucose accumulated in the cultures. Biochemical analyses revealed lower rates of glucose uptake and hexokinase activity of the mutant strain in comparison with the parent strain. It is proposed that, in common with submerged fermentation, over-production of citric acid in solid state fermentation is related to an increased glucose flux through glycolysis. At low glucose fluxes, oxalic acid is accumulated.  相似文献   

18.
Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initiation of alcohol oxidase synthesis was delayed by the addition of 0.5% glucose to the methanol medium, whereas it was not delayed in mutant strain ADU-15. This showed that alcohol oxidase underwent repression by glucose. On the other hand, degradation of alcohol oxidase after transfer of the cells from methanol to glucose medium (catabolite inactivation) was observed to proceed at similar rates in parent and mutant strains. The results of immunochemical titration experiments suggest that catabolite inactivation of alcohol oxidase is coupled with a quantitative change in the enzyme. Mutant strain ADU-15 was proved to be a catabolite repression-insensitive mutant and to produce alcohol oxidase in the presence of glucose. However, it was not an overproducer of alcohol oxidase and, in both the parent and mutant strains, alcohol oxidase was completely repressed by ethanol.  相似文献   

19.
Spontaneous mutants of Azotobacter vinelandii defective for glucose utilization were selected as resistant to 5-thio-D-glucose. Mutant strains AM2, AM38, and AM39 exhibited longer generation times than the wild type when grown on glucose. Mutant strain AM2 also exhibited an altered Km and Vmax for glucose uptake. During acetate-glucose diauxie, glucose utilization in the 5-thio-D-glucose-resistant mutants was subject to severe inhibition by acetate. These mutants did not exhibit the normal glucose phase of diauxie. Transport studies during diauxie indicated that glucose uptake was not induced in mutant strain AM2. However, increasing the glucose concentration from 25 to 200 mM relieved the severe acetate inhibition, and under these conditions the mutant strain AM2 exhibited normal diauxie. Revertants of mutant strain AM2 exhibited normal glucose and diauxie growth. The results are discussed in terms of a model for acetate regulation of glucose utilization in A. vinelandii.  相似文献   

20.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号