首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum bottles are frequently used for studies of reductive dechlorination by vitamin B12, but reducing conditions can be maintained only for several days. This time period is inadequate for evaluating the reductive dechlorination of some slow-reacting aromatic compounds. Sealed glass ampoules maintain reducing conditions for many months, but this method has the disadvantage of disallowing subsampling of the reaction mixture. A glass serum tube was modified for these experiments which not only maintained anoxic conditions for several days but also allowed subsamples to be removed during experiments. The modification was a restriction placed in the middle of the tube by heating in a flame, creating two chambers separated by a narrow neck. The lower chamber contained the oxygen-sensitive reaction mixture. The upper chamber, sealed with a septum and screw cap, was purged with purified nitrogen or argon introduced and vented through fused silica capillaries. Reductive dechlorination of chlorophenols by vitamin B12 reduced with Ti(III) citrate was monitored in all three reactor types. Sealed ampoules maintained reducing conditions for up to 12 months. The two-chambered reactor maintained reducing conditions longer than the serum vials when frequent samples were taken.  相似文献   

2.
Vitamin B(12), reduced by titanium (III) citrate to vitamin B(12s), catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B(12) favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

3.
Vitamin B12, reduced by titanium (III) citrate to vitamin B12s, catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B12 favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

4.
The effect of changes in redox potential on methanogenesis from acetate, and on the reductive dechlorination of pentachlorophenol (PCP), was evaluated using a computer-monitored and feedback-controlled bioreactor. PCP was transformed via 2,3,4, 5-tetrachlorophenol (2,3,4,5-TeCP) to 3,4,5-trichlorophenol (3,4, 5-TCP). In 6- to 12-d experiments, pH, acetate concentration, and temperature were held constant; the redox potential, defined here as the potential measured at a platinum electrode (EPt), was maintained at different set points, while transformation of multiple PCP additions was monitored. Without redox potential control, the value of EPt for the culture was approximately -0.26 V (vs. SHE). The value of EPt was elevated from -0.26 V for periods up to 10 h by computer-controlled addition of H2O2 or K3Fe(CN)6. Methanogenesis continued during a relatively mild shift of EPt to -0.2 V with H2O2, but was halted when EPt was raised to -0.1 V with either H2O2 or K3Fe(CN)6. Methanogenesis resumed when EPt returned to -0.26 V. During periods in which EPt was elevated significantly and methanogenesis stopped, transformation of PCP and 2,3,4,5-TeCP continued at progressively slower rates, but the rate of 2,3,4, 5-TeCP transformation was diminished to a greater extent. When a small volume of pure H2 was added to the reactor headspace, while EPt was maintained at -0.1 V, reductive dechlorination rates increased dramatically. Lower H2 concentrations during periods of oxidant addition, perhaps due to the effect of the oxidant on H2-producing bacteria, may contribute to decreased reductive dechlorination rates. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

5.
A novel hollow-fiber membrane remediation technology developed in our laboratory for hydrogen delivery to the subsurface was shown to support the dechlorination of perchloroethene (PCE) to cis-dichloroethene. In previous research, the presence of nitrate or sulfate has been observed to inhibit biological reductive dechlorination. In this study hollow-fiber membranes were used to supply hydrogen to a mixed culture to investigate whether adequate hydrogen could be added to support dechlorination in the presence of alternative electron acceptors. By continuously supplying hydrogen through the membrane, the hydrogen concentrations within the reactor were maintained well above the hydrogen thresholds reported to sustain reductive dechlorination. It was hypothesized that by preventing nitrate and sulfate reducers from decreasing hydrogen concentrations to below the dehalorespirer threshold, the inhibition of PCE dechlorination by nitrate and sulfate might be avoided and dechlorination could be stimulated more effectively. Enough membrane-fed hydrogen was supplied to completely degrade the alternative electron acceptors present and initiate dechlorination. Nevertheless, nitrate and sulfate inhibited dechlorinating activity even when hydrogen was not limiting. This suggests that competition for hydrogen was not responsible for the observed inhibition. Subsequent microcosm experiments demonstrated that the denitrification intermediate nitrous oxide was inhibitory at 13 µM.  相似文献   

6.
The study investigated the use of hollow-fiber membranes for hydrogen (H2) delivery to support the biological reductive dechlorination of tetrachloroethene (PCE) Two experiments were performed in which H2 was supplied through membranes placed in stirred batch reactors containing a mixed methanogenic/dechlorinating culture and PCE (≤10?µM. Reductive dechlorination of PCE to cis-dichloroethene was sustained in the reactors receiving H2 (1% H2 and 50% H2), while negligible dechlorination was observed in control reactors (100% N2). The 1%-H2-fed reactor outperformed the 50%-H2-fed reactor in the first experiment. However, the dechlorinating performance in the two reactors was similar in the second experiment. Despite relatively high H2 concentrations (4.6 to 178?µM) that led to H2 consumption (and CH4 production) by methanogens, dechlorination was effectively maintained for the duration of the experiments (35 to 62 days). The results of this study are significant in that dechlorination was sustained in a minimal medium by membrane-delivered H2. Dechlorination was also maintained at aqueous H2 concentrations that exceeded the thermodynamic thresholds for not only dechlorination (<0.1 to 2?nM, but also methanogenesis (~10?nM) and homoacetogenesis (94 to 400?nM. The results of these experiments suggest that membranes are a promising H2 delivery technology for stimulating the bioremediation of chlorinated ethene-contaminated aquifers.  相似文献   

7.
The removal of carbon tetrachloride under sulfate reducing conditions was studied in an an aerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 μM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon tetrachloride was also completely dechlorinated to unknown products. Gram-positive sulfate-reducing bacteria were involved in the reductive dechlorination of carbon tetrachloride to chloroform and dichloromethane since both molybdate, an inhibitor of sulfate reduction, and vancomycin, an inhibitor of gram-positive bacteria completely inhibited carbon tetrachloride transformation. Carbon tetrachloride transformation by these bacteria was a cometabolic process and depended on the input of an electron donor and electron acceptor (sulfate). The rate of carbon tetrachloride transformation by sulfate reducing bacteria depended on the type of electron donor present. A transformation rate of 5.1 nmol·ml-1·h-1 was found with ethanol as electron donor. At carbon tetrachloride concentrations higher than18 μM, sulfate reduction and reductive dechlorination of carbon tetrachloride decreased and complete inhibition was observed at a carbon tetrachloride concentration of 56.6 μM. It is not clear what type of microorganisms were involved in the observed partial complete dechlorination of carbon tetrachloride. Sulfate reducing bacteria probably did not play a role since inhibition of these bacteria with molybdate had no effect on the complete dechlorination of carbon tetrachloride. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Bioremediation of groundwater contaminated with chlorinated solvents, such as perchloroethylene (PCE) or carbon tetrachloride, can be accomplished by adding nutrients to stimulate a microbial community capable of reductive dechlorination. However, biotransformation of these solvents, especially PCE, typically occurs very slowly or not at all. Experiments were conducted to evaluate whether the addition of transition metal tetrapyrrole catalysts would increase the reductive transformation of PCE to trichloroethylene (TCE) by sulfate-reducing enrichment cultures. Batch assays were used to test vitamin B12 and two synthetic sulfonatophenyl porphine catalysts for the stimulation of reductive dechlorination of PCE by sulfate-reducing bacteria (SRB) enriched from aquifer sediments from two locations at Dover Air Force Base. Cells from the enrichments were concentrated and added to batch assay vials. Vials containing SRB cells amended with vitamin B12 exhibited enhanced transformation of PCE to TCE compared with reactors amended with either synthetic catalysts or reactors containing cells alone. Methane production was observed in reactors that exhibited maximum levels of dechlorination. Storage of aquifer sediments between enrichments led to decreased levels of PCE dechlorination in subsequent assays.  相似文献   

9.
AIMS: To determine whether composting with animal manure can be used to effectively remediate soil from a pentachlorophenol (PCP)-contaminated site, and to establish the fate of the degraded xenobiotic. METHODS AND RESULTS: Contaminated soil from a sawmill site was mixed with farm animal manure and composted in a 0.5 m3 silo under fully aerobic conditions. The disappearance and fate of PCP was monitored by gas chromatography (GC-ECD) and extensive mineralization confirmed in experiments with 14C-radiolabelled PCP. The disappearance of PCP was rapid and virtually complete within 6 days, prior to the onset of thermophilic conditions. Dechlorination of the PCP was found to be both reductive and sequential. CONCLUSIONS: PCP removal from contaminated soil by aerobic composting with animal manure is efficient and proceeds via reductive dechlorination to virtually complete mineralization. This contrasts with other chlorophenol composting regimes in which mineralization is achieved but dechlorination intermediates do not accumulate to detectable levels. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study demonstrate that anaerobic reductive dechlorination can proceed in an aerobic composting environment and contribute to efficient pentachlorophenol removal. Farmyard manure composts may represent a rapid, low-cost, low-technology option for treatment of chlorophenol-contaminated soils.  相似文献   

10.
The transformation of 2,4,6-trichlorophenol (TCP) into 4-chlorophenol (4CP) was studied using a stable methanogenic enrichment culture derived from an anaerobic fixed bed reactor. Using acetate as a growth substrate, different inhibitors of methanogenesis exhibited distinct effects on TCP dechlorination. Whereas reductive dechlorination activity was not affected by 2% ethylene in the gas phase, 25 mM bromoethanesulfonic acid (BESA) had a direct inhibitory effect on this process. The choice of BESA as a specific inhibitor for identifying the subpopulations involved in reductive dechlorination of chloroaromatics is thus questionable. Inhibitors of sulfate reduction such as molybdate (20 mM) and selenate (20 mM) had a direct inhibitory effect on reductive dechlorination independently of the presence of sulfate in the medium supplemented with acetate as growth substrate. Consequently much more care must also be taken with these inhibitors to prove that reductive chlorination is coupled to sulfate reduction.  相似文献   

11.
The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 microM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C-U]-PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic-anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ.  相似文献   

12.
A H(2)-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks, suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H(2) pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H(2) bio-availability caused by a low H(2) pressure or competition from sulfate reduction.  相似文献   

13.
This study investigates an innovative dechlorination process using anaerobic granular sludge that was partially exposed to oxygen. The exposure supported a synchronously anaerobic and aerobic bioconversion process that combined reductive dechlorination with aerobic co-oxidation in a sludge granule. Experimental results showed that the highest dechlorination rates of tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride were 6.44, 2.98, 1.70 and 0.97 nmol/gVS day, at initial O2 concentrations of 10, 100, 5 and 0%, respectively. Strictly anaerobic conditions favored the dechlorination of vinyl chloride while absolutely aerobic conditions were preferred for trichloroethene dechlorination. Microaerophilic conditions are suggested to ensure the overall biodegradation of the chlorinated ethenes present in groundwater as a mixture.  相似文献   

14.
This study examined the ability of different electron donors (i.e., hydrogen, methanol, butyrate, and yeast extract) to sustain long-term (500 days) reductive dechlorination of tetrachloroethene (PCE) in anerobic fill-and-draw bioreactors operated at 3:1 donor:PCE ratio (defined on a total-oxidation basis for the donor). Initially (i.e., until approximately day 80), the H(2)-fed bioreactor showed the best ability to completely dechlorinate the dosed PCE (0.5 mmol/L) to ethene whereas, in the presence of methanol, butyric acid or no electron donor added (but low-level yeast extract), dechlorination was limited by the fermentation of the organic substrates and in turn by H(2) availability. As the study progressed, the H(2)-fed reactor experienced a diminishing ability to dechlorinate, while more stable dechlorinating activity was maintained in the reactors that were fed organic donors. The initial diminished ability of the H(2)-fed reactor to dechlorinate (after about 100 days), could be partially explained in terms of increased competition for H(2) between dechlorinators and methanogens, whereas other factors such as growth-factor limitation and/or accumulation of toxic and/or inhibitory metabolites were shown to play a role for longer incubation periods (over 500 days). In spite of decreasing activity with time, the H(2)-fed reactor proved to be the most effective in PCE dechlorination: after about 500 days, more than 65% of the added PCE was dechlorinated to ethene in the H(2)-fed reactor, versus 36%, 22%, and <1% in the methanol-fed, butyrate-fed, and control reactors, respectively.  相似文献   

15.
Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.  相似文献   

16.
Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.  相似文献   

17.
Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.  相似文献   

18.
The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes.  相似文献   

19.
Vitamin B12s effects the reductive dechlorination of mirex (dechlorane) in protic solvent systems, under both catalytic and stoichiometric conditions, mainly to yield compounds of composition C10Cl12-nHn, with n = 1-8, in which the basic dihomocubane cage structure is retained; the formation of cage-opened, reductively dehalogenated derivatives of 4,7-methanoindene occurs only to a very minor extent. The corresponding reactions of kepone (chlordecone), in contrast, occur with predominant formation of indene derivatives. Under certain mild conditions, vitamin B12s induces a fragmentation of kepone leading to the destruction of the dihomocubane moiety and the formation of an isolable organocobalamin having a C3Cl3H2 residue attached to the cobalt atom. In strongly alkaline media, the reaction of kepone with vitamin B12s may in addition yield high-molecular-weight condensation products of unknown constitution. Reactions of this type are of interest as prototypes of soil-decontamination processes.  相似文献   

20.
The biological anaerobic reductive dechlorination of beta-hexachlorocyclohexane under methanogenic conditions was tested in a number of contaminated soil samples from two locations in the Netherlands. Soils from a heavily polluted location showed rapid dechlorination of beta-hexachlorocyclohexane to benzene and chlorobenzene with lactate as electron donor. Soils from an adjacent slightly polluted location did not show substantial dechlorination of beta-hexachlorocyclohexane within 4 months. A heavily polluted sample was selected to optimise the dechlorination. All tested hexachlorocyclohexane isomers (alpha-, beta-, gamma-, and delta-), either added separately or simultaneously, were dechlorinated in this soil sample. The most rapid dechlorination was observed at a temperature of 30 degrees C. Dechlorination of beta-hexachlorocyclohexane was observed with acetate, propionate, lactate, methanol, H2, yeast extract and landfill leachate as electron donors. In a soil percolation column, packed with a selected heavily polluted soil sample, the presence of 10 mM sulphate in the influent led to simultaneous dechlorination of beta-hexachlorocyclohexane and sulphate reduction. When the column was fed with 10 mM nitrate instead of sulphate, dechlorination ceased immediately. After omitting nitrate from the influent, dechlorination activity recovered in about 1 month. Also in a separate column, the addition of nitrate from the start of the experiment did not result in dechlorination of beta-HCH. The significance of these experiments for in situ bioremediation of polluted soils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号