首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of yeast strains, isolated from sugar cane mills and identified as strains of Kluyveromyces marxianus var. marxianus, were examined for their ability to ferment glucose and cane syrup to ethanol at high temperatures. Several strains were capable of rapid fermentation at temperatures up to 47°C. At 43°C, >6% (wt/vol) ethanol was produced after 12 to 14 h of fermentation, concurrent with retention of high cell viability (>80%). Although the type strain (CBS 712) of K. marxianus var. marxianus produced up to 6% (wt/vol) ethanol at 43°C, cell viability was low, 30 to 50%, and the fermentation time was 24 to 30 h. On the basis of currently available strains, we suggest that it may be possible by genetic engineering to construct yeasts capable of fermenting carbohydrates at temperatures close to 50°C to produce 10 to 15% (wt/vol) ethanol in 12 to 18 h with retention of cell viability.  相似文献   

2.
An enrichment and isolation program for new ethanol-producing thermotolerant yeasts as well as a screening program of some known thermotolerant strains resulted in the selection of several strains capable of growth at 40-43 degrees C. Among these strains four grew and fermented sugar cane molasses at 43 degrees C under batch conditions with sugar-conversion efficiencies >94% and ethanol concentrations 6.8-8.0% (w/v). The two best-performing strains, a Saccharomyces cerevisiae F111 and a Kluyveromyces marxianus WR12 were used in eight 87.5 m(3) fermentation runs (four using each strain) for industrial ethanol production in an Egyptian distillery using sugar cane molasses. Mean ethanol production was 7.7% and 7.4% (w/v), respectively, with an added advantage of cooling elimination during fermentation and higher ethanol yields compared to the distillery's S. cerevisiae SIIC (ATCC 24855) strain in use. The isolate S. cerevisiae F111 was subsequently adopted by the distillery for regular production with significant economical gains and water conservation.  相似文献   

3.
Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield.  相似文献   

4.
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown on the extract derived from the tubers of Jerusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (FST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35 degrees C. The ethanol production was found to be growth-associated having a mu(max) = 0.41. h(-1) and the ethanol and biomass yields were determined to be Y(p/s) = 0.45 (88% of the theoretical) and Y(x/s) = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with K. maxxianus, the calculated ethanol yields were found to range from 1400 kg ethanol acre (-1) yr(-1)to a maximum of 2700 kg ethanol acre (-1) yr(-1). The SCP yields for K. marxianus were calculated to range between 130 to 250 kg dry wt cell acre (-1) yr(-1). The potential for developing an integrated process to produce ethanol and SCP is also discussed.  相似文献   

5.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

6.
Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α‐amylase from Aspergillus oryzae as well as α‐amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:338–347, 2014  相似文献   

7.
Summary Amino acid analyses were undertaken on single cell protein (SCP) produced by thermotolerant strains ofKluyveromyces marxianus var.marxianus grown on sugar cane molasses at 40°C. The maximum conversion of available sugars to biomass at 45°C was only 10.8% (g dry wt.·g–1 total sugars). The amino acid composition of the SCP did not differ markedly from that reported for other yeast species.  相似文献   

8.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

9.
A thermotolerant yeast strain named Kluyveromyces marxianus IMB4 was used in a simultaneous saccharification and fermentation (SSF) process using Kanlow switchgrass as a feedstock. Switchgrass was pretreated using hydrothermolysis at 200 degrees C for 10 min. After pretreatment, insoluble solids were separated from the liquid prehydrolyzate by filtration and washed with deionized water to remove soluble sugars and inhibitors. Insoluble solids were then hydrolyzed using a commercial cellulase preparation and the released glucose was fermented to ethanol by K. marxianus IMB4 in an SSF process. SSF temperature was 37, 41, or 45 degrees C and pH was 4.8 or 5.5. SSF was conducted for 7 days. Results were compared with a control of Saccharomyces cerevisiae D(5)A at 37 degrees C and pH 4.8. Fermentation by IMB4 at 45 and 41 degrees C ceased after 3 and 4 days, respectively, when a pH 4.8 citrate buffer was used. Fermentation continued for all 7 days using IMB4 at 37 degrees C and the control. When pH 5.5 citrate buffer was used, fermentation ceased after 96 h using IMB4 at 45 degrees C, and ethanol yield was greater than when pH 4.8 citrate buffer was used (78% theoretical). Ethanol yield using IMB4 at 45 degrees C, pH 5.5 was greater than the control after 48, 72, and 96 h (P < 0.05).  相似文献   

10.
Six thermotolerant yeasts were isolated at 37 degrees C from over-ripe grapes by serial dilution technique using glucose yeast extract medium. Purified yeast cultures were screened for ethanol production at 37 degrees C by batch fermentation, using cane molasses containing 20% sugars. Sugar conversion efficiency of these isolates varied from 66.0 to 88.5% and ethanol productivity from 1.11 to 1.73 ml/l/h. The highest ethanol producing isolate was exposed to UV radiations and 13 mutants were picked up from the UV treatment exhibiting 0.1 to 1.0%, survival. The UV mutants varied in cell size from parent as well as among themselves. Determination of ethanol produced by all the mutants revealed that only five mutants resulted in 4.5 to 6.2% increase in sugar conversion and 8.25 to 18.56% increase in ethanol concentration coupled with maximum ethanol productivity of 2.4 ml/l/h in 48 h of batch fermentation of cane molasses (20% sugars) at 37 degrees C temperature.  相似文献   

11.
This study was aimed to study the effect of commercial cellulases (Celluclast 1.5 LFG) on Kluyveromyces marxianus CECT 10875 growth and ethanol production in SSF processes. Preliminary tests carried out in glucose (50 g/L) fermentation medium showed that high enzyme amounts (2.5-3.5 FPU/mL) could cause a negative effect on K. marxianus growth rate and viable cells number. However, the maximum ethanol production was not affected and about 86% of the theoretical (22 g/L) was reached in all cases independently of the enzyme dosage. In SSF experiments, cell viability was always affected by enzyme loading. Nevertheless, slight differences observed on cell viability during glucose fermentation processes with the detected concentrations of the additives did not justify the negative effect observed in SSF experiments.  相似文献   

12.
Thermotolerant Kluyveromyces marxianus var. marxianus IMB3 yeast strain was immobilized on Kissiris (mineral glass foam derived from lava) in column packed reactors, and used for ethanol production from glucose or molasses under continuous culture conditions at temperatures between 40 and 50°C. Both ethanol yield and fermentation efficiency were highest at 45°C and a dilution rate (D) of 0.15/h. Increasing sugar concentration led to an increase in ethanol yield of up to 68.6 and 55.9 g/l on approx. 200g glucose or molasses, respectively. Optimum fermentation efficiency (experimental yields over theoretical maximum yields) however was at about 15% sugar for both glucose and molasses. Slight aeration (25 ml of air/min) through the medium addition line was found advantageous due to its mixing effect and probable maintenance of activity.  相似文献   

13.
By using 7 x 10(8) cells of Saccharomyces cerevisiae per ml with which 25 degrees Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 x 10(7) to 7.8 x 10(8) cells per ml. At the lowest level of inoculum, 1.1 x 10(7) cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar.  相似文献   

14.
The effects of temperature, solvents, and cultural conditions on the fermentative physiology of an ethanol-tolerant (56 g/liter at 60°C) and parent strain of Clostridium thermohydrosulfuricum were compared. An ethanol-tolerant mutant was selected by successive transfer of the parent strain into media with progressively higher ethanol concentrations. Physiological differences noted in the mutant included enhanced growth, tolerance to various solvents, and alterations in the substrate range and the fermentation end product ratio. Ethanol tolerance was temperature dependent in the mutant but not in the parent strain. The mutant grew with ethanol concentrations up to 8.0% (wt/vol) at 45°C, but only up to 3.3% (wt/vol) at 68°C. Low ethanol concentration (0.2 to 1.6% [wt/vol]) progressively inhibited the parent strain to where glucose was not fermented at 2.0% (wt/vol) ethanol. Both strains grew and produced alcohols on glucose complex medium at 60°C in the presence of either 5% methanol or acetone, and these solvents when added at low concentration stimulated fermentative metabolism. The mutant produced ethanol at high concentrations and displayed an ethanol/glucose ratio (mole/mole) of 1.0 in media where initial ethanol concentrations were ≤4.0% (wt/vol), whereas when ethanol concentration was changed from 0.1% to 1.6% (wt/vol), the ethanol/glucose ratio for the parent strain changed from 1.6 to 0.6. These data indicate that C. thermohydrosulfuricum strains are tolerant of solvents and that low ethanol tolerance is not a result of disruption of membrane fluidity or glycolytic enzyme activity.  相似文献   

15.
Eight strains of Kluyveromyces marxianus were screened, and all of them were found to ferment the aldopentose d-xylose directly to ethanol under aerobic conditions. One of these strains, K. marxianus SUB-80-S, was grown in a medium containing 20 g of d-xylose per liter, and the following results were obtained: maximum ethanol concentration, 5.6 g/liter; ethanol yield, 0.28 g of ethanol per g of d-xylose (55% of theoretical); maximum specific growth rate, 0.12 h; 100% d-xylose utilization was completed in 48 h.  相似文献   

16.
Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40 degrees C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35 degrees C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38 degrees C.  相似文献   

17.
Simultaneous saccharification and fermentation (SSF) experiments were performed at selected temperatures (37, 41, and 43 degrees C) to obtain comprehensive material balance and performance data for several promising strains of thermotolerant yeast. Parameters measured were ethanol concentration, yeast cell density, and residual sugar and cellulose concentrations. The three yeasts Saccharomyces uvarum, Candida brassicae, and C. lusitaniae and two mixed cultures of Brettanomyces clausenii with S. cerevisiae (mixed culture I) and C. Iusitaniae with S. uvarum (mixed culture II) exhibited rapid rates of fermentation, high ethanol yields, strong viability, or high cellobiase activity. Overall, mixed culture II at 41 degrees C performed better than either component yeast by themselves because it combined a cellobiose fermenting capability with the high ethanol tolerance and rapid glucose fermentation of conventional industrial yeasts. Thus, the mixed cultures provide good initial rates by preventing buildup of cellobiose (a strong inhibitor of enzyme activity) while attaining high ultimate yields of ethanol for high cellulase concentrations. However, C. brassicae and S. uvarum gave similar results to mixed culture II at 37 degrees C.  相似文献   

18.
Summary Ethanol was produced from xylose by converting the sugar to xylulose, using commercial xylose isomerases, and simultaneously converting the xylulose to ethanol by anaerobic fermentation using different yeast strains. The process was optimized with the yeast strain Schizosaccharomyces pombe (Y-164). The data show that the simultaneous fermentation and isomerization of 6% xylose can produce final ethanol concentrations of 2.1% w/v within 2 days at temperatures as high as 39°C.Nomenclature SFIX simultaneous fermentation and isomerization of xylose - V p volumetric production (g ethanol·l-1 per hour) - Q p specific rate (g ethanol·g-1 cells per hour) - Y s yield from substrate consumed (g ethanol, g-1 xylose) - ET ethanol concentration (% wt/vol) - XT xylitol concentration (% wt/vol) - Glu glucose - Xyl xylose - --m maximum - --f final  相似文献   

19.
To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification–fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 °C and 37 °C, while the activity of cellulolytic enzymes is highest at around 50 °C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus β-glucosidase on the cell surface, which successfully converts a cellulosic β-glucan to ethanol directly at 48 °C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of β-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface.  相似文献   

20.
After whey fermentation by Kluyveromyces marxianus var. marxianus (30°C, pH 4.5, 24 h) and autolysis of the cells (50°C, pH 6.5, 12 h), the subsequent extracts were centrifuged (10,000 × g, 4°C, 15 min), and the cell walls were separated from the autolysates. Cell walls were then treated with: (i) 0.75M NaOH (75°C, 20 h) ; or (ii) lytic enzymes, 0.0025–5.0% (w/v), in 5 mM phosphate buffer (pH 6.5–7.0) (40°C, 24 h). The lytic enzymes were denaturated (80°C, 15 min), and the alkali solutions were neutralized with 0.5M acetic acid, before centrifugation. The supernatants were concentrated by a Speed-Vac concentrator, and analyzed by HPLC, equipped with a TSK-Amide 80 column (1.0 ml/ min of water/acetonitrile, 35/65 ratio, 60°C, 40 min). Tetrasaccharides were detected. Gels were formed when cell walls were treated with NaOH. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号