首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utilization and conversion of glucose to volatile acids were monitored in anaerobic digestors by 13C-nuclear magnetic resonance. Glucose was converted to lactate and acetate. Lactate was subsequently converted to propionate. The distribution of the labeled carbons in propionate suggested that minor amounts were produced via the randomizing pathway and that the major portion of propionate was derived from lactate.  相似文献   

2.
The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii.  相似文献   

3.
1. Solutions containing acetate, [2-(14)C]propionate and butyrate were placed into the ruminoreticulum of calves to measure the extent to which propionate is metabolized by ruminoreticulum epithelium. In response to five different combinations of pH and total volatile fatty acid concentrations, propionate absorption rates ranged from 89 to 341mmol/h. 2. The extent of propionate conversion into lactate, calculated from both concentration and specific radioactivity in portal and arterial blood, averaged 4.9 (range 2.5-9.1)%. 3. Circulating glucose synthesized from propionate had a higher specific radioactivity than arterial lactate and was converted into lactate by gastrointestinal tissues. Thus conversion of propionate into lactate was overestimated but was corrected to average 2.3 (1.0-4.6)%. 4. The estimates of propionate conversion into lactate were negatively correlated with its rate of absorption.  相似文献   

4.
Contribution of propionate to glucose synthesis in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [(14)C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-(14)C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-(14)C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [(14)C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-(14)C]-, [2-(14)C]-, [3-(14)C]- and [U-(14)C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (+/-s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0.33+/-0.03 (4) m-mole/min. and by using a primed infusion was 0.32+/-0.01 (4) m-mole/min. The mean propionate production rate was 1.24+/-0.03 (8) m-moles/min. The conversion of propionate into glucose was 0.36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate.  相似文献   

5.
More than 90% of the aspartate in a defined medium was metabolized after lactate exhaustion such that 3 mol of aspartate and 1 mol of propionate were converted to 3 mol of succinate, 3 mol of ammonia, 1 mol of acetate, and 1 mol of CO2. This pathway was also evident when propionate and aspartate were the substrates in complex medium in the absence of lactate. In complex medium with lactate present, about 70% of the aspartate was metabolized to succinate and ammonia during lactate fermentation, and as a consequence of aspartate metabolism, more lactate was fermented to acetate and CO2 than was fermented to propionate. The conversion of aspartate to fumarate and ammonia by the enzyme aspartase and subsequent reduction of fumarate to succinate occurred in the five strains of Propionibacterium freudenreichii subsp. shermanii studied. The ability to metabolize aspartate in the presence of lactate appeared to be related to aspartase activity. The specific activity of aspartase increased during and after lactate utilization, and the levels of this enzyme were lower in cells grown in defined medium than levels in those cells grown in complex medium. Under the conditions used, no other amino acids were readily metabolized in the presence of lactate. The possibility that aspartate metabolism by propionibacteria in Swiss cheese has an influence on CO2 production is discussed.  相似文献   

6.
1. Rates of gluconeogenesis in the perfused rat liver from propionate, l-lactate, pyruvate and the combination of propionate with either lactate or pyruvate were measured. Less than additive rates were obtained with either propionate plus lactate or propionate plus pyruvate. 2. The uptake of pyruvate plus lactate from the perfusion medium was decreased more seriously when propionate was present with lactate than with pyruvate. 3. The use of [2-(14)C]pyruvate in the presence of propionate showed that the decreased disappearance of pyruvate plus lactate did not result in their formation from propionate. 4. The addition of sodium butyrate to the perfusion medium caused an inhibition of gluconeogenesis from propionate and stimulated gluconeogenesis and uptake of pyruvate and lactate. 5. The observations are consistent with there being a sparing effect of propionate on lactate and pyruvate metabolism.  相似文献   

7.
The human intestine harbors both lactate-producing and lactate-utilizing bacteria. Lactate is normally present at <3 mmol liter(-1) in stool samples from healthy adults, but concentrations up to 100 mmol liter(-1) have been reported in gut disorders such as ulcerative colitis. The effect of different initial pH values (5.2, 5.9, and 6.4) upon lactate metabolism was studied with fecal inocula from healthy volunteers, in incubations performed with the addition of dl-lactate, a mixture of polysaccharides (mainly starch), or both. Propionate and butyrate formation occurred at pH 6.4; both were curtailed at pH 5.2, while propionate but not butyrate formation was inhibited at pH 5.9. With the polysaccharide mix, lactate accumulation occurred only at pH 5.2, but lactate production, estimated using l-[U-(13)C]lactate, occurred at all three pH values. Lactate was completely utilized within 24 h at pH 5.9 and 6.4 but not at pH 5.2. At pH 5.9, more butyrate than propionate was formed from l-[U-(13)C]lactate in the presence of polysaccharides, but propionate, formed mostly by the acrylate pathway, was the predominant product with lactate alone. Fluorescent in situ hybridization demonstrated that populations of Bifidobacterium spp., major lactate producers, increased approximately 10-fold in incubations with polysaccharides. Populations of Eubacterium hallii, a lactate-utilizing butyrate-producing bacterium, increased 100-fold at pH 5.9 and 6.4. These experiments suggest that lactate is rapidly converted to acetate, butyrate, and propionate by the human intestinal microbiota at pH values as low as 5.9, but at pH 5.2 reduced utilization occurs while production is maintained, resulting in lactate accumulation.  相似文献   

8.
Synthesis of phosphoenolpyruvate from propionate in sheep liver   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Utilization of propionate by sheep liver mitochondria was stimulated equally by pyruvate or alpha-oxoglutarate, with formation predominantly of malate. Pyruvate increased conversion of propionate carbon into citrate, whereas alpha-oxoglutarate increased formation of phosphoenolpyruvate. The fraction of metabolized propionate converted into phosphoenolpyruvate was about 17% in the presence or absence of alpha-oxoglutarate and about 7% in the presence of pyruvate. Pyruvate consumption was inhibited by 80% by 5mm-propionate. 2. Compared with rat liver, sheep liver was characterized by very high activities of phosphoenolpyruvate carboxykinase and moderately high activities of aconitase in the mitochondria and by low activities of ;malic' enzyme, pyruvate kinase and lactate dehydrogenase in the cytosol. Activities of phosphoenolpyruvate carboxy-kinase were similar in liver cytosol from rats and sheep. Activities of malate dehydrogenase and NADP-linked isocitrate dehydrogenase in sheep liver were about half those in rat liver. 3. The phosphate-dicarboxylate antiport was active in sheep liver mitochondria, but compared with rat liver mitochondria the citrate-malate antiport showed only low activity and mitochondrial aconitase was relatively inaccessible to external citrate. The rate of swelling of mitochondria induced by phosphate in solutions of ammonium malate was inversely related to the concentration of malate. 4. The results are discussed in relation to gluconeogenesis from propionate in sheep liver. It is proposed that propionate is converted into malate by the mitochondria and the malate is converted into phosphoenolpyruvate by enzymes in the cytosol. In this way sufficient NADH would be generated in the cytosol to convert the phosphoenolpyruvate into glucose.  相似文献   

9.
Acidogenic fermentation of lactose was carried out in a continuous stirred reactor with a mixed anaerobic culture. From the variation of the reactor products with pH and dilution rate two possible carbon flow schemes were proposed for the reaction. In both schemes the carbon flow from pyruvate to butyrate and lactate was assumed to occur in parallel. A change in gas composition and in product concentrations at dilution rates between 0.1 and 0.15 h(-1) for pH levels between 4.5 and 6.0 was ascribed to a shift in microbial population. To clarify the mechanism radiotracer tests were made using [U-(14)C]-butyrate, [2-(14)C]-propionate and [U-(14)C]-lactate to determine the path of carbon flow during acidogenesis of lactose using a mixed culture. At a dilution rate between 0.1 and 0.15 h(-1) and pH from 4.5 to 6.0 a rise in the lactate concentration in the product was shown to be due to a microbial population shift which disabled the conversion of lactate to other intermediary metabolites. It was also found that the flow of carbon from pyruvate to butyrate and lactate occurred by parallel pathways. Also, in the presence of hydrogen reducing methanogens, lactate was almost completely converted to acetate and not propionate. Butyrate was found to be converted to acetate at a slow rate as long as hydrogen reducing methanogens were present. The role played by propionibacteria in this lactose acidogenic eocosystem was minor. From the carbon flow model it can be concluded that lactate is the most suitable marker for optimizing an acidogenic reactor in a two-phase biomethanation process.  相似文献   

10.
The intrinsic fermentation kinetics of lactose in acidogenic biofilms were investigated in situ in a continuous flow fermentor at 35 degrees C and pH 4.6. The external and internal mass transfer resistances to lactose molecules from bulk solution to inside the biofilms were experimentally minimized or eliminated in a thin biofilm and recycled medium. In a chemically defined culture medium, the immobilized acidogens converted lactose mainly to acetate and butyrate; the minor products included ethanol. propionate, lactate, and hydrogen. The utilization rate of lactose, as a function of lactose concentration in the fermentor, can be described by a Michaelis-Menten equation, as can the formation rates of acetate, butyrate, and ethanol. The production rates of propionate and lactate had a liner relationship with lactose concentration under the experimental conditions. The low pH (4.6) of culture medium could depress the formation of propionate, and intermediate which is most difficulty digested by acetogenic bacteria located in the second fermentor in a two-phase process. Production rate of acetate quickly reached a constant, and additional utilization of lactose produced more butyrate and other minor products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Saccharomyces uvarum, Geotrichum candidum, Endomycopsis burtonii and Hansemula canadensis have been isolated from deteriorated silages and/or spoiled lactic acid fermented foods. All yeasts could grow in relatively high (100 mmol/l) concentrations of acetate or lactate in Wickerham's assimilation broth but were inhibited by increasing concentrations of these acids. Propionate was much more inhibitory than acetate or lactate. Growth rate, but not final cell yield, was adversely affected by increasing concentrations of these acids. The three acids used in combination were synergistically inhibitory to H. canadensis and G. candidum. Saccharomyces uvarum was inhibited by synergistic mixtures of acetate/propionate. Endomycopsis burtonii and H. canadensis were inhibited by synergistic mixtures of acetate/lactate, acetate/propionate and lactate/propionate. Lactate and propionate had a synergistic inhibitory effect on G. candidum. The mechanism of inhibition of growth of S. uvarum by acetate and propionate was further investigated. Acetate and propionate each caused a reduction in cellular efficiency (Y, μg cells/μmole glucose consumed). Mixtures caused a drastic reduction in growth rate and Y. These results suggest that the cells may expend energy in reducing intracellular concentrations of acetate while propionate probably acts in a different manner.  相似文献   

12.
利用改进型Hungate技术从猪粪中分离到一株乳酸利用、丁酸产生双重功能菌株LB01。常规生化检测表明菌株LB01为革兰氏阳性、严格厌氧菌,能利用葡萄糖、果糖、麦芽糖和乳酸等碳源,并产生大量的气体;16S rRNA序列比对表明其与GenBank中的Megasphaera hominis与Uncultured rumen bacterium 3c3d-18的同源性最高,同源性高达99%。菌株LB01可以利用乳酸,并将其主要转化为丁酸和丙酸,在有葡萄糖的情况下,菌株LB01尚能够利用乙酸并生成丁酸。与乳杆菌K9共培养时,菌株LB01有效地利用了乳杆菌K9代谢过程中产生的乳酸,减缓了由于乳酸积累而造成的pH值下降,并且将乳酸转化为丁酸和丙酸。这些代谢特征表明菌株LB01是一株具有潜在应用价值的肠道益生菌,它能够利用乳酸和乙酸(补充额外能量),能有效地防止乳酸和乙酸的积累,同时生成包括丁酸在内有益的短链脂肪酸,调控后肠道pH,营造着微酸的环境。  相似文献   

13.
Fermentative degradation of alcohols and aldehydes in the absence of sulfate was investigated using a propionate-oxidizing, sulfate-reducing bacterium, Desulfobulbus propionicus strain MUD (DSM 6523). The organism converted ethanol plus CO2 to acetate and propionate. The conversion was not affected by the presence of hydrogen. Strain MUD converted propanol plus acetate to propionate. Acetaldehyde and propionaldehyde were also converted with a dismutation reaction in the absence of sulfate. The products were propionate and acetate from acetaldehyde, and propionate from propionaldehyde plus acetate.  相似文献   

14.
1. Administration of propionate caused a twofold increase in the concentrations of lactate and pyruvate in the blood of vitamin B(12)-deficient rats, whereas there was a slight decrease in lactate and a 50% increase in pyruvate in normal rats. 2. Concentrations of total ketone bodies in the blood of normal rats were not significantly altered by propionate administration but the [3-hydroxybutyrate]/[acetoacetate] ratio decreased from 3.0 to 2.0. In the vitamin B(12)-deficient rats there was a 40% decrease in total ketone bodies and a change in the ratio from 3.4 to 1.2. 3. The changes in the concentration of ketone bodies in freeze-clamped liver preparations were similar in pattern to those observed in blood. 4. Propionate administration caused a decrease in the concentration of acetyl-CoA in the livers of both groups of animals, but the absolute decrease was greater in the vitamin B(12)-deficient group. The decrease in the concentration of CoA was similar in both groups. 5. As in blood, there were threefold increases in the concentrations of lactate and pyruvate in the livers of the vitamin B(12)-deficient rats after propionate administration, whereas there was no significant change in the concentrations of these metabolites in the normal rats. 6. There was a 50% inhibition of glucose synthesis in perfused livers from vitamin B(12)-deficient rats when lactate and propionate were substrates as compared with lactate alone. 7. It is concluded that the conversion of lactate into glucose is inhibited in vitamin B(12)-deficient rats after propionate administration, and that this effect is due to inhibition of the pyruvate carboxylase step resulting from a decrease in acetyl-CoA concentration and a postulated increase in methylmalonyl-CoA concentration.  相似文献   

15.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

16.
A method is described for increasing the production of H2 from glucose or lactate by Selenomonas ruminantium by sequential transfers in media containing pregrown Methanobacterium ruminantium. The methanogen uses the H2 formed by the selenomonad to reduce CO2 to CH4. Analysis of fermentation products from glucose showed that lactate was the major product formed from glucose by S. ruminantium alone. Several sequential transfers in the presence of the methanogen caused a marked decrease in lactate production, which was accompanied by an increase in acetate. When lactate was the fermentation substrate, S. ruminantium alone produced propionate, acetate, and CO2. Addition to the pregrown methanogen in the sequential transfer procedure caused a significant decrease in the production of propionate and an increase in acetate formed from lactate. These results are interpreted in terms of the influence of H2 utilization by the methanogen on the production of H2 versus lactate or propionate from reduced pyridine nucleotides by S. ruminantium.  相似文献   

17.
A method is described for increasing the production of H2 from glucose or lactate by Selenomonas ruminantium by sequential transfers in media containing pregrown Methanobacterium ruminantium. The methanogen uses the H2 formed by the selenomonad to reduce CO2 to CH4. Analysis of fermentation products from glucose showed that lactate was the major product formed from glucose by S. ruminantium alone. Several sequential transfers in the presence of the methanogen caused a marked decrease in lactate production, which was accompanied by an increase in acetate. When lactate was the fermentation substrate, S. ruminantium alone produced propionate, acetate, and CO2. Addition to the pregrown methanogen in the sequential transfer procedure caused a significant decrease in the production of propionate and an increase in acetate formed from lactate. These results are interpreted in terms of the influence of H2 utilization by the methanogen on the production of H2 versus lactate or propionate from reduced pyridine nucleotides by S. ruminantium.  相似文献   

18.
1. Gluconeogenesis from propionate and lactate was studied in caprine hepatocytes. 2. Reducing cytosol with additions of ETOH, ammonium, or lactate decreased [2-14C]propionate conversion to glucose. 3. Calcium oxidized the cytosol and increased gluconeogenesis from propionate by 198% and from lactate by 220%. 4. Cells isolated from lactating does and wethers differed quantitatively in propionate conversion to glucose and response to calcium. 5. Acetoacetate decreased and 3-OH-butyrate slightly increased glucose production from propionate. 6. Neither ketone body had any significant effect on gluconeogenesis from lactate. 7. Results reported herein suggest gluconeogenesis from propionate is not limited by lack of cytosolic reducing equivalents.  相似文献   

19.
The effects of sodium propionate, acetate, lactate and citrate on cell proliferation, glucose and oxygen consumption, and ATP production in Listeria monocytogenes were investigated in growing and resting cells. Media pH was 6.7-6.8. Growth inhibition increased while glucose consumption continued in the presence of ≥ 1% propionate, ≥ 3% acetate and ≥ 5% lactate in broth during incubation at 35°C, indicating that glucose consumption was uncoupled from cell proliferation. Acetate and propionate were the most effective antilisterials, whereas citrate (5%) was only slightly inhibitory. Of the four salts, only lactate supported growth, oxygen consumption and ATP production. While concentrations of 1 and 5% propionate, acetate and citrate did not have an effect on oxygen consumption, they inhibited ATP production. ATP production in the presence of the four salts was consistently lower at pH 6.0 than at neutral pH. Lactate served as an alternative energy source for L. monocytogenes in the absence of glucose but became toxic to the organism in the presence of the carbohydrate.  相似文献   

20.
Competitive exclusion of Salmonella enterica serovar Enteritidis by a mixed culture of Lactobacillus crispatus and Clostridium lactatifermentans was studied in a sequencing fed-batch reactor mimicking the cecal ecophysiology of broiler chickens. Growth of serovar Enteritidis was inhibited by a mixed culture of L. crispatus and C. lactatifermentans at pH 5.8 but not by a monoculture of L. crispatus at the same pH. Moreover, experiments performed at pH 7.0 did not show growth inhibition of serovar Enteritidis. L. crispatus fermented lactose to lactate, and C. lactatifermentans fermented the lactate to acetate and propionate in a mixed culture of L. crispatus and C. lactatifermentans growing on lactose. In contrast, only lactate was produced from lactose by a monoculture of L. crispatus. At pH 5.8 considerable concentrations of acetate and propionate were present as undissociated acids, whereas only trace levels of undissociated lactate were present at pH 5.8 due to the low pK(a) of lactate. At pH 7.0 all three acids were present in their dissociated forms. We conclude that a mixed culture of L. crispatus and C. lactatifermentans inhibits growth of serovar Enteritidis under cecal growth conditions. The undissociated forms of acetate and propionate produced in the mixed culture inhibited the growth of serovar Enteritidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号