首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Improved retroviral vectors for gene transfer and expression   总被引:320,自引:0,他引:320  
A D Miller  G J Rosman 《BioTechniques》1989,7(9):980-2, 984-6, 989-90
We describe a set of murine retrovirus-based vectors that include unique cloning sites for insertion of cDNAs such that the cDNA can be driven by either the retroviral long terminal repeat, the immediate early promoter of human cytomegalovirus, or the simian virus 40 early promoter. The vectors carry the neomycin phosphotransferase gene expressed from an alternate promoter as a selectable marker. These vectors have been constructed to prevent viral protein synthesis from the remaining viral sequences, to yield high-titer virus stocks after introduction into retrovirus packaging cells, and to eliminate homologous overlap with viral DNAs present in retrovirus packaging cells in order to prevent helper virus production. Methods for generating high-titer virus are described.  相似文献   

2.
Nonintegrating retroviral vectors were produced from a Moloney murine leukemia virus (MoMLV)-based retroviral vector system by introducing a point mutation into the integrase (IN) gene of the packaging plasmid. The efficacy of IN-defective retroviral vectors was measured through the transient expression of ZsGreen or luciferase in human cell lines. The IN-defective retroviral vectors could transduce target cells efficiently, but their gene expression was transient and lower than that seen with the integrating vectors. IN-defective retroviral vector gene expression decreased to background levels in fewer than 10 days. Southern blot analysis of transduced K562 cells confirmed the loss of a detectable vector sequence by 15 days. The residual integration activity of the IN-defective vector was 1000- to 10,000-fold lower than that of the integrating vector. These results demonstrate that the IN-defective retroviral vectors can provide a useful tool for efficient transient gene expression targeting of primary hematopoietic stem cells and lymphoid cells.  相似文献   

3.
4.
Q vectors, bicistronic retroviral vectors for gene transfer   总被引:3,自引:0,他引:3  
We have developed a retroviral vector that incorporates unique features of some previously described vectors. This vector includes: 3' long terminal repeats (LTRs) of the self-inactivating class; a 5' LTR that is a hybrid of the cytomegalovirus (CMV) enhancer and the mouse sarcoma virus promoter; an internal CMV immediate early region promoter to drive expression of the transduced gene and the neomycin phosphotransferase selectable marker; an expanded multiple cloning site and an internal ribosome entry site. An SV40 ori was introduced into the vector backbone to promote high copy number replication in packaging cell lines that express the SV40 large T antigen. We demonstrate that these retroviral constructs, designated Q vectors, can be used in applications where high viral titers and high level stable or transient gene expression are desirable.  相似文献   

5.
The human cytomegalovirus and elongation factor 1?? promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines.  相似文献   

6.
Endothelial cells are attractive targets for gene transfer because of their immediate contact with the bloodstream, and, therefore, they might serve as vehicles for therapeutic drug delivery. Recently, we and others reported that endothelial cells of animal origin efficiently express both secretory and nonsecretory recombinant proteins. We now show that human endothelial cells are also capable of expressing a recombinant gene following transduction with retroviral vectors. Human umbilical vein endothelial cells were transduced with either the N2 or the SAX vector. Following selection with G418, cells transduced by both vectors were found to express neophosphotransferase activity, the product of the neomycin resistance gene. The fact that a recombinant gene can be readily inserted and efficiently expressed into human endothelial cells suggests that these cells may be able to serve a role in human gene therapy.  相似文献   

7.
8.
9.
de Felipe P  Izquierdo M  Wandosell F  Lim F 《BioTechniques》2001,31(2):394-402, 404-5
Retroviral vectors have long been used in a wide variety of gene transfer applications but have certain drawbacks, such as small cargo size, limited tropism, and low titers. HSV expression vectors overcome these disadvantages, but, because they persist in target cells as nonreplicative episomes, they are not retained in all the progeny of dividing cells. Chimeric HSV/AAV products that can mediate transgene integration in human mitotic cells have been constructed, but, to date, genetic modification of dividing cells in animal models using HSV products has not been possible. Here, we report the construction of hybrid HSV/retroviral vectors that exhibit up to 50-fold higher transgene integration efficiency compared to vectors containing only HSV-1 components. Efficient integration of a retroviral transgene cassette encoding pac in human cells required expression of the Moloney murine leukemia virus gag-pol genes, but in murine cells, could also be mediated by endogenous activities, albeit at a lower level. Gene delivery was equally efficient in BHK21, a cell line resistant to retroviral infection, and transgene retention and expression were observed to be stable for least one month in Hs683 human glioma cells. These vectors have wide applications for the genetic modification of many cell types.  相似文献   

10.
Hepatocyte-specific gene expression from integrated lentiviral vectors   总被引:2,自引:0,他引:2  
BACKGROUND: For many applications, efficient gene therapy will require long-term, organ-specific therapeutic gene expression. Lentiviral vectors based on HIV-1 are promising gene delivery vehicles due to their ability to integrate transgenes into non-dividing cells. Many experimental vectors express transgenes under the control of the cytomegalovirus (CMV) immediate-early gene promoter. Although this promoter directs strong gene expression in vitro, it may be shut off rapidly in vivo. This study explores the potential of HIV-1-based vectors to transduce hepatocytes and compares gene expression from different promoters in integrated vectors. METHODS: HIV-1-based vector plasmids expressing the green fluorescent protein (GFP) under the control of the CMV promoter, the alpha-1 antitrypsin gene promoter or promoters derived from the hepatitis B virus (HBV) genome were used to compare expression in transfected and transduced cell lines. RESULTS: Hepatocyte cell lines differed strikingly in their transfectability. Transduction with replication-deficient HIV-1-based vector particles incorporating the different promoter elements was uniformly effective in hepatocyte and non-hepatocyte lines. However, in hepatocytes, only the CMV, alpha-1 antitrypsin and HBV core but not HBV surface promoters were able to produce GFP expression. Addition of the HBV enhancer 2 element improved the transducing ability of the HBV surface promoter and suppressed expression in non-hepatocytes increasing specificity for hepatocytes. CONCLUSIONS: Integrated lentiviral vectors can be used to direct transgene expression in liver cells both promiscuously and specifically. Promoters derived from the alpha-1 antitrypsin gene or HBV are alternatives to the CMV promoter. Inclusion of the HBV enhancer 2 permits strong liver-specific gene expression in vitro.  相似文献   

11.
12.
13.

Background

Because gene therapy of the future will primarily take an in vivo approach, a number of problems associated with its current implementation exist. Currently, repeated delivery of a vector in vivo is necessary to ensure adequate transfer of the therapeutic gene. This may lead to the development of an immune response against the vector, thus interfering with gene delivery. To circumvent this problem, retroviral vector packaging cells that permanently produce recombinant retroviral vector particles have been encapsulated.

Methods

Vector (pBAG)‐producing amphotropic cells were encapsulated in beads composed of polymerized cellulose sulphate. These capsules were analysed in vitro for expression of the vector construct using X‐gal staining, as well as for the release of particles by performing RT‐PCR from culture supernatant. Infectivity studies were performed in vitro and in vivo. The latter was assayed using histological sections of the microcapsule and the surrounding area stained for β‐galactosidase activity and by RT‐PCR.

Results

In culture, the virus‐producing cells inside the capsules remained viable and released virus into the culture medium for at least 6 weeks. To test whether these capsules, upon implantation into mice, also release vector virions that infect the surrounding cells, two different models were used. In the first, capsules were implanted in the fat pad of the mammary gland of Balb/c mice. The capsules were well tolerated for at least 6 weeks and a self‐limiting inflammatory reaction without any other gross immune response was observed during this period. Furthermore, the virus‐producing cells remained viable. In the second model, SCID mice were immunologically reconstituted by subcutaneous implantation of thymus lobes from MHC‐identical Balb/c newborn mice and gene transfer into lymphoid cells was achieved by retroviral vectors released by co‐implanted capsules.

Conclusion

The implantation of such capsules containing cells that continually produce retroviral vector particles may be of use for in vivo gene therapy strategies. The data presented demonstrate the feasibility of the concept. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.
Gene therapy has developed to a technology which rapidly moved from the laboratory bench to the bedside in the clinic. This implies safe, efficient and targeted gene transfer systems for suitable application to the patient. Beside the development of such gene transfer vectors of viral or nonviral origin, improvement of cell type specific and inducible gene expression is pivotal for successful gene therapy leading to targeted gene action. Numerous gene therapy approaches for treatment of cancer and retroviral infections utilize cell type specific and/or regulatable promoter and enhancer sequences for the selective expression of therapeutic genes in the desired cell populations and tissues. In this article the recent developments and the potential of expression targeting are reviewed for gene therapy approaches of cancer and retroviral infections.  相似文献   

15.
As tools for functional genomics, expression profiling and proteomics provide correlative data, while expression cloning screens can link genes directly to biological function. However, technical limitations of gene transfer, expression, and recovery of candidate genes have limited wider application of genome-wide expression screens. Here we describe the pEYK retroviral vectors, which maintain high titers and robust gene expression while addressing the major bottleneck of expression cloning—efficient candidate gene recovery. By exploiting schemes for enhanced PCR rescue or strategies for direct isolation of proviral DNA as plasmids in bacterial hosts, the pEYK vectors facilitate cDNA isolation from selected cells and enable rapid iteration of screens and genetic reversion analyses to validate gene candidates. These vectors have proven useful to identify genes linked to cell proliferation, senescence and apoptosis.  相似文献   

16.
17.
18.
The enhanced green fluorescent protein (EGFP) is increasingly used as a reporter gene in viral vectors for a number of applications. To establish a system to study the activity of cis-acting cellular regulatory sequences, we deleted the viral enhancer in EGFP-carrying retroviral vectors and replaced it with cell type-specific elements. In this study, we use this system to demonstrate the activity of the human CD2 lymphoid-specific and the Tie2 endothelial cell type-specific enhancers in cell lines and in primary cells transduced by retroviral vectors. Furthermore, we compare findings obtained with EGFP as the reporter gene to those obtained replacing EGFP with d2EGFP, an unstable variant of EGFP characterized by a much shorter half-life compared to EGFP, and by reduced accumulation in the cells. d2EGFP-carrying vectors were generated at titers which were not different from those generated by the corresponding vectors carrying EGFP. Moreover, the activity of a Moloney murine leukemia virus enhancer could be readily detected following transduction of target cells with either EGFP- or d2EGFP-carrying vectors. However, the activity of the relatively weak CD2 and Tie2 enhancers was exclusively detected using EGFP as the reporter gene.These findings indicate that enhancer replacement is a feasible and promising approach to address the function of cell type-specific regulatory elements in retroviral vectors carrying the EGFP gene.  相似文献   

19.
Gene therapy is a novel approach for treating various congenital and acquired genetic disorders, including cancer, heart disease, and acquired immune deficiency syndrome. Amongst possible gene delivery systems, retroviral vector mediated gene transfer has been the most extensively studied and has been approved for use in over 40 current Phase I/II clinical trials for the treatment of various disorders, primarily cancers. Recent technological improvements include the optimization of vector production by concentration and lyophilization, resulting in high titers of vectors, as well as the large-scale production of vector-produced cells for the treatment of brain cancer. Present clinical protocols require specialized care centers with expertise in molecular biology and cell transplantation. Considerable effort is under way to develop retroviral vectors that can be both injected directly into the body and targeted to specific cell types within the body. Such vectors could be administered to patients by physicians in their offices. Successful development of this new technology would greatly expand the clinical potential of gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号