共查询到20条相似文献,搜索用时 0 毫秒
1.
Tit-Yee Wong 《Applied microbiology》1988,54(2):473-475
Mannose is not a suitable substrate for N2-fixing Azotobacter vinelandii. However, when H2 gas is provided, A. vinelandii can grow mixotrophically with H2 as the energy source and mannose as the carbon source (T.-Y. Wong and R. J. Maier, J. Bacteriol. 163:528-533, 1985). In this report, seven sugars were used to determine whether A. vinelandii could derive energy from these sugars for mannose utilization. Supplementation of fructose- or galactose-limited medium with mannose did not influence the biomass produced by N2-fixing A. vinelandii. The presence of mannose in glucose- or maltose-limited cultures increased cell yield slightly. The addition of mannose decreased the total biomass in the melibiose-limited culture slightly. Mannose was a potent inhibitor of growth when sucrose or turanose was used as the primary sugar. The inhibitory effect of mannose on utilization of sucrose and turanose seems to be related to the energy requirement of the N2-fixing processes. 相似文献
2.
Azotobacter vinelandii cells grew well in a medium made from soil and distilled water which contained little or no carbohydrate. They utilized p-hydroxybenzoic acid and other phenolic acids, soil nitrogen, and water-soluble mineral substances. Seventeen soils which supported excellent growth of A. vinelandii contained 11 to 18 different phenolic acids each, including p-hydroxybenzoic, m-hydroxybenzoic, vanillic, p-coumeric, syringic, cis- and trans-ferrulic, and other unidentified aromatic acids. Three white, chalky “caliche” soils which were taken from areas where no plants grew failed to support the growth of A. vinelandii, and these contained no, two, and three phenolic acids, respectively. A. vinelandii did not fix nitrogen when growing in dialysates of soils which contained numerous phenolic acids. Growth was ample and rapid in most of the soils tested, but cell morphology was different from that usually seen in chemically defined, nitrogen-free media which contain glucose. 相似文献
3.
Yamazaki Takeshi; Yoshida Naohiro; Wada Eitaro; Matsuo Sadao 《Plant & cell physiology》1987,28(2):263-271
A nitrogen-fixing bacterium Azotobacter vinelandii was successfullygrown in a specially designed system with constant partial pressuresof N2O (0.2 atm) and O2 (0.2 atm) in a nitrogen-free liquidmedium. Reduction of N2O proceeded with the evolution of N2in the gas phage. Large nitrogen isotope fractionation was found for both processes,reduction of N2O to N2 and N2O-fixation. The kinetic isotopefractionation factors of these reactions were at most 1.039and 1.034, respectively. Furthermore, an unexpected inverseisotope effect (organic-N, the end-product, is more enrichedin 15N than N2, the intermediate) strongly suggested that N2Owas directly assimilated within the bacterial cells. Simultaneousassimilation of N2O and N2 was also confirmed by using a 15Ntracer technique. Three independent pathways were demonstrated for the nitrogenfixing system investigated in this study: (1) a direct reductionof N2O to ammonium (apparently 8-electron reduction), (2) reductionof N2 to ammonium (6-electron reduction) and (3) N2O reductionto N2 (2-electron reduction).
3 Present address: Department of Environmental Sciences, Facultyof Integrated Arts and Sciences, Hiroshima University, Hiroshima730, Japan
4 Present address: Department of Earth Sciences, Faculty ofScience, Toyama University, Gofuku, Toyama 930, Japan (Received June 18, 1986; Accepted December 16, 1986) 相似文献
4.
Azotobacter vinelandii can grow with a variety of organic carbon sources and fix N2 without the need for added H2. However, due to an active H2-oxidizing system, H2-dependent mixotrophic growth in an N-free medium was demonstrated when mannose was provided as the carbon source. There was no appreciable growth with either H2 or mannose alone. Both the growth rate and the cell yield were dependent on the concentrations of both substrates, H2 and mannose. Cultures growing mixotrophically with H2 and mannose consumed approximately 4.8 mmol of O2 and produced 4.6 mmol of CO2 per mmol of mannose consumed. In the absence of H2, less CO2 was produced, less O2 was consumed, and cell growth was negligible. The rate of acetylene reduction in mixotrophic cultures was comparable to the rate in cultures grown in N-free sucrose medium. The rate of [14C]mannose uptake of cultures with H2 was greater than with argon, whereas [14C]sucrose uptake was unaffected by the addition of H2; therefore, the role of H2 in mixotrophic metabolism may be to provide energy for mannose uptake. A. vinelandii is not an autotroph, as attempts to grow the organism chemoautotrophically with H2 or to detect ribulose bisphosphate carboxylase activity were unsuccessful. 相似文献
5.
6.
Non-heme iron (iron-sulfur) proteins of Azotobacter vinelandii 总被引:4,自引:0,他引:4
Y I Shethna 《Biochimica et biophysica acta》1970,205(1):58-62
7.
Non heme (iron-sulfur) proteins of Azotobacter vinelandii 总被引:6,自引:0,他引:6
Y I Shethna D V DerVartanian H Beinert 《Biochemical and biophysical research communications》1968,31(6):862-868
8.
After synthesis during the early log phase, the concentrations of ubiquinone and cytochromes did not vary during the growth cycle of Azotobacter vinelandii, when grown with either high or low aeration on nitrogen-free or urea-containing media. The level of aeration had no effect on the concentrations of the electron carriers synthesized, but affected the growth rate. On urea-containing medium, the concentration of cytochrome a(2) was low, but it was synthesized at a linear rate when the bacteria were transferred to nitrogen-free medium. A. vinelandii was shown to utilize sufficient medium urea to account for all of the cell nitrogen. Growth on urea-containing medium with an oxygen atmosphere resulted in low growth yields, and cytochromes c(4) + c(5) were not synthesized; the concentrations of ubiquinone and cytochromes b(1), a(1), and a(2) were only 12 to 18% of the values for growth on nitrogen-free medium with high aeration. 相似文献
9.
T. Y. Wong 《Applied microbiology》1993,59(1):89-92
A fast and environmentally safe procedure was used to study sugar uptake by Azotobacter vinelandii. Transport experiments were performed in a 24-well plate and aerated by rapid oscillatory vibration. Samples were washed by centrifugation and dissolved in biodegradable scintillation cocktail for counting. At cell concentrations up to 6 × 108 cells per ml, the uptake of sucrose was a function of time and was proportional to the cell concentration. This modified uptake assay was used to test the effect of cations on sugar uptake in A. vinelandii. Results showed that Ca2+ at 1 to 2 mM stimulated sucrose uptake by decreasing the apparent Km of sucrose transport. Higher Ca2+ concentrations inhibited sucrose uptake in this organism. 相似文献
10.
J. Moreno † T. de la Rubia A. Ramos-Cormenzana G.R. Vela 《Journal of applied microbiology》1990,69(6):850-855
M oreno , J., de la R ubia , T., R amos -C ormenzana , A. & V ela , G.R. 1990. Growth and nitrogenase activity of Azotobacter vinelandii on soil phenolic acids. Journal of Applied Bacteriology 69 , 850–855.
Growth and nitrogenase activity (acetylene reduction) of Azotobacter vinelandii were studied in soil suspensions supplemented with p -hydroxybenzoic, vanillic, p -coumaric and ferulic acids. Nitrogenase activity was detected only when the microorganism was cultured on p -hydroxybenzoic acid, suggesting that this compound could be utilized as a carbon source by A. vinelandii for the maintenance of its biological activities under certain environmental conditions. 相似文献
Growth and nitrogenase activity (acetylene reduction) of Azotobacter vinelandii were studied in soil suspensions supplemented with p -hydroxybenzoic, vanillic, p -coumaric and ferulic acids. Nitrogenase activity was detected only when the microorganism was cultured on p -hydroxybenzoic acid, suggesting that this compound could be utilized as a carbon source by A. vinelandii for the maintenance of its biological activities under certain environmental conditions. 相似文献
11.
Non-nodular tissue of soybean (Glycine max L. Merrill) plants grown hydroponically in the absence of added N have a 15N abundance close to that of atmospheric N2. In contrast, nodules are usually enriched in 15N. In this paper, we report measurements of the 15N abundance of foliar tissue and nodules of soybeans inoculated with 11 variably efficient strains of Rhizobum japonicum and grown hydroponically with no added N. The efficiency of the 11 symbioses varied over a wide range as judged by a 16-fold difference in N content. The degree of 15N enrichment of nodules was closely correlated with N2-fixing efficiency (milligrams N fixed per milligram N in the nodules).
These results confirm prior preliminary data based on six variably efficient R. japonicum strains. The strong correlation between NN enrichment of soybean nodules and N2-fixing efficiency is consistent with the hypothesis that new nodule tissue is synthesized from a pool of recently fixed N within the same nodule.
相似文献12.
T Y Wong 《Applied and environmental microbiology》1990,56(1):93-97
When mannose was added to a sucrose-supported culture of Azotobacter vinelandii under N2-fixing conditions, cell growth was inhibited. The degree of inhibition was proportional to the amount of mannose and to the aeration rate (T.-Y. Wong, Appl. Environ. Microbiol. 54:473-475, 1988). In this report, we demonstrate that once inside the cell, mannose was phosphorylated to mannose 6-phosphate. It was then isomerized to fructose 6-phosphate and to glucose 6-phosphate. Mannose inhibited sucrose uptake noncompetitively. The decrease in sucrose uptake after mannose addition coincided with a lower rate of respiration and a decrease in nitrogenase activity. The decrease in sucrose uptake and in the ATP pool may decrease the electron flow and reduce protection of the nitrogenase from O2. Cells became very sensitive to O2, and therefore, cell growth was inhibited under high aeration conditions. 相似文献
13.
Hyperproduction of Poly-beta-Hydroxybutyrate during Exponential Growth of Azotobacter vinelandii UWD
The transformation of Azotobacter vinelandii UW with A. vinelandii 113 DNA resulted in the formation of rifampin-resistant colonies, 13% of which also inherited a previously unrecognized mutation in the respiratory NADH oxidase. These transformants produced colonies with a white-sectored phenotype after prolonged incubation. Cells from these sectors were separated and purified by streaking and were named UWD. The dense white phenotype was due to the production of a large amount of poly-beta-hydroxybutyrate during the exponential growth of strain UWD. The polymer accounted for 65 or 75% of the cell dry weight after 24 h of incubation of cultures containing glucose and either ammonium acetate or N(2), respectively, as the nitrogen source. Under the same conditions, strain UW cells contained 22 to 25% poly-beta-hydroxybutyrate, but O(2)-limited growth was required for these optimal production values. Polymer production was not dependent on O(2) limitation in strain UWD, but the efficiency of conversion of glucose to poly-beta-hydroxybutyrate was enhanced in O(2)-limited cultures. Conversion efficiencies were >0.25 and 0.33 mg of poly-beta-hydroxybutyrate per mg of glucose consumed under vigorous- and low-aeration conditions, respectively, compared with an efficiency of 0.05 achieved by strain UW. Strain UWD, therefore, appeared to from poly-beta-hydroxybutyrate under novel conditions, which may be useful in designing new methods for the industrial production of biodegradable plastics. 相似文献
14.
Analyses of resting cells of Azotobacter vinelandii revealed that numerous phospholipids were present that did not concentrate in the membranous R(3) fraction which carried out electron transport function. 相似文献
15.
Vegetative cells and cysts of Azotobacter vinelandii 12837 were prepared for electron microscopy by several methods assumed to preserve structural details destroyed by techniques previously reported in the literature. Examination of large numbers of cells and cysts by these methods revealed four structural details not reported previously: intine fibrils, intine vesicles, intine membrane, and microtubules. The intine fibrils form a network in the gel-like homogeneous matrix of the CC2 layer. Intine vesicles which seem to originate in the cell wall complex of the central body are seen in the intine and exine of cysts. Analogous structures are found on vegetative cells. The intine is divided into two chemically distinct areas by the two-layered intine membrane. Microtubules, previously reported only in vegetative cells, were found in cysts. 相似文献
16.
AIMS: The ability of Azotobacter vinelandii, a N(2)-fixing bacterium, to biodegrade tetracyanonickelate (TCN) was evaluated. METHODS AND RESULTS: The amounts of TCN were measured spectrophotometrically. Ammonia was determined colorimetrically by the indophenol method. The produced methane from TCN conversion by A. vinelandii was detected by gas chromatography. Results showed that A. vinelandii was able to biodegrade 1 mmol l(-1) of TCN. Ammonia and methane were detected during the process of TCN degradation. Effects of exogenous nitrogen sources on TCN degradation were addressed in this study. Results revealed that the addition of ammonia (1, 5 and 10 mmol l(-1)) into the reaction mixtures caused decrease of TCN degradation rate during a 24-h incubation period. This inhibition was also observed when nitrite (5 and 10 mmol l(-1)) was added, whereas TCN degradation still proceeded after the addition of nitrate at the same concentrations. Furthermore, the rate of TCN utilization was strikingly enhanced when 0.8% of glucose was added. CONCLUSIONS: Azotobacter vinelandii can degrade 1 mmol l(-1) of TCN into ammonia and methane. However, the inhibitory effects of exogenous ammonia and nitrite on TCN degradation by this bacterium were found in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report defining the capability of A. vinelandii to degrade TCN. This bacterium might have potential value in applied strategies for removing metal-cyano wastes. Furthermore, these findings would be helpful in designing a practical system inoculated with A. vinelandii for the treatment of TCN. 相似文献
17.
The adenosinetriphosphatase (ATPase) (EC 3.6.1.3) activity in Azotobacter vinelandii concentrates in the membranous R3 fraction that is directly associated with Azotobacter electron transport function. Sonically disrupted Azotobacter cells were examined for distribution of ATPase activity and the highest specific activity (and activity units) was consistently found in the particulate R3 membranous fraction which sediments on ultracentrifugation at 144 000 X g for 2 h. When the sonication time interval was increased, the membrane-bound ATPase activity could neither be solubilized nor released into the supernatant fraction. Optimal ATPase activty occurred at pH 8.0; Mg2+ ion when added to the assay was stimulatory. Maximal activity always occurred when the Mg2+:ATP stoichiometry was 1:1 on a molar ratio at the 5 mM concentration level. Sodium and potassium ions had no stimulatory effect. The reaction kinetics were linear for the time intervals studied (0-60 min). The membrane-bound ATPase in the R3 fraction was stimulated 12-fold by treatment wiTH TRypsin, and fractionation studies showed that trypsin treatment did not solubilize ATPase activity off the membranous R3 electron transport fraction. The ATPase was not cold labile and the temperature during the preparation of the R3 fraction had no effect on activity; overnight refrigeration at 4 degrees C, however, resulted in a 25% loss of activity as compared with a 14% loss when the R3 fraction was stored overnight at 25 degrees C. A marked inactivation (although variable, usually about 60%) did occur by overnight freezing (-20 degrees C), and subsequent sonication failed to restore ATPase activity. This indicates that membrane reaggregation (by freezing) was not responsible for ATPase inactivation. The addition of azide, ouabain, 2,4-dinitrophenol, or oligomycin to the assay system resulted in neither inhibition nor stimulation of the ATPase activity. The property of trypsin activation and that ATPase activity is highest in the R3 electron transport fraction suggests that its probable functional role is in coupling of electron transport to oxidative phosphorylation. 相似文献
18.
Azotobacter vinelandii UWD formed polyhydroxyalkanoate (PHA) copolymers containing beta-hydroxybutyrate and beta-hydroxyvalerate (HV) when grown in a medium containing glucose as the primary C source and valerate (pentanoate) as a precursor. Copolymer was not formed when propionate was added to the glucose medium but was formed when heptanoate, nonanoate, or trans-2-pentenoate was present. Optimal levels of HV were formed when valerate was added at the time of maximum PHA synthesis, although HV incorporation was not dependent on glucose catabolism. HV content in the polymer was increased from 17 to 24 mol% by adding 10 to 40 mM valerate to glucose medium, but HV insertion into the polymer occurred at a fixed rate. Similarly, the addition of valerate to a fed-batch culture of strain UWD in beet molasses in a fermentor produced 19 to 22 g of polymer per liter, containing 8.5 to 23 mol% HV after 38 to 40 h. The synthesis of HV in these cultures also occurred at a fixed rate (2.3 to 2.8 mol% h-1), while the maximum PHA production rate was 1.1 g liter-1 h-1. During synthesis of copolymer in batch or fed-batch culture, the yield from conversion of glucose into PHA (YP/S) remained at maximum theoretical efficiency (greater than or equal to 0.33 g of PHA per g of glucose consumed). Up to 45 mol% C source, but the PHA produced amounted to less than 1 g/liter. The combination of 30 mM valerate as a sole C source and 0.5 mM 4-pentenoate increased the HV content in the polymer to 52 mol%.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Tao Ren Nancy B. Pellerin Gordon L. Graff Ilhan A. Aksay James T. Staley 《Applied microbiology》1992,58(9):3130-3135
The high surface charge of small ceramic particles such as alumina particles prevents them from dispersing evenly in aqueous suspensions and forming high-density compacts. However, suspensions of 400-nm-diameter alumina particles treated with alginate from the bacterium Azotobacter vinelandii were well dispersed. The alginate bound firmly to the particle surface and could not be removed by repeated washing with distilled water (2.82 mg of the bacterial alginate adsorbed to 1 g of the alumina particles). Furthermore, A. vinelandii grew and produced alginate in the presence of up to 15% (vol/vol) alumina particles. These results suggest that an in situ process using this bacterium to coat ceramic particles with alginate might be developed. In in situ processing experiments, the particle-packing densities were significantly increased and the viscosities of 5 and 10% (vol/vol) suspensions were reduced 4- and 60-fold, respectively, over those of controls. The bacteria were readily removed from the alumina particles by washing. 相似文献
20.
Azotobacter vinelandii UWD formed polyhydroxyalkanoate (PHA) copolymers containing beta-hydroxybutyrate and beta-hydroxyvalerate (HV) when grown in a medium containing glucose as the primary C source and valerate (pentanoate) as a precursor. Copolymer was not formed when propionate was added to the glucose medium but was formed when heptanoate, nonanoate, or trans-2-pentenoate was present. Optimal levels of HV were formed when valerate was added at the time of maximum PHA synthesis, although HV incorporation was not dependent on glucose catabolism. HV content in the polymer was increased from 17 to 24 mol% by adding 10 to 40 mM valerate to glucose medium, but HV insertion into the polymer occurred at a fixed rate. Similarly, the addition of valerate to a fed-batch culture of strain UWD in beet molasses in a fermentor produced 19 to 22 g of polymer per liter, containing 8.5 to 23 mol% HV after 38 to 40 h. The synthesis of HV in these cultures also occurred at a fixed rate (2.3 to 2.8 mol% h-1), while the maximum PHA production rate was 1.1 g liter-1 h-1. During synthesis of copolymer in batch or fed-batch culture, the yield from conversion of glucose into PHA (YP/S) remained at maximum theoretical efficiency (greater than or equal to 0.33 g of PHA per g of glucose consumed). Up to 45 mol% C source, but the PHA produced amounted to less than 1 g/liter. The combination of 30 mM valerate as a sole C source and 0.5 mM 4-pentenoate increased the HV content in the polymer to 52 mol%.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献