首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

2.
Southern hybridization with nif (nitrogen fixation) and nod (nodulation) DNA probes from Rhizobium meliloti against intact plasmid DNA of Rhizobium japonicum and Bradyrhizobium japonicum strains indicated that both nif and nod sequences are on plasmid DNA in most R. japonicum strains. An exception is found with R. japonicum strain USDA194 and all B. japonicum strains where nif and nod sequences are on the chromosome. In R. japonicum strains, with the exception of strain USDA205, both nif and nod sequences are on the same plasmid. In strain USDA205, the nif genes are on a 112-megadalton plasmid, and nod genes are on a 195-megadalton plasmid. Hybridization to EcoRI digests of total DNA to nif and nod probes from R. meliloti show that the nif and nod sequences are conserved in both R. japonicum and B. japonicum strains regardless of the plasmid or chromosomal location of these genes. In addition, nif DNA hybridization patterns were identical among all R. japonicum strains and with most of the B. japonicum strains examined. Similarly, many of the bands that hybridize to the nodulation probe isolated from R. meliloti were found to be common among R. japonicum strains. Under reduced hybridization stringency conditions, strong conservation of nodulation sequences was observed in strains of B. japonicum. We have also found that the plasmid pRjaUSDA193, which possess nif and nod sequences, does not possess sequence homology with any plasmid of USDA194, but is homologous to parts of the chromosome of USDA194. Strain USDA194 is unique, since nif and nod sequences are present on the chromosome instead of on a plasmid as observed with all other strains examined.  相似文献   

3.
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.  相似文献   

4.
5.
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.  相似文献   

6.
DNA hybridization with the cloned nodulation region of Rhizobium meliloti as a probe revealed DNA homology with four HindIII fragments, 12.5, 6.8, 5.2, and 0.3 kilobases (kb) in size, of the symbiotic plasmid pRjaUSDA193. Both hybridization and complementation studies suggest that the common nodulation genes nodABC and nodD of R. fredii USDA 193 are present on the 5.2-kb HindIII and 2.8-kb EcoRI fragments, respectively, of the Sym plasmid. Both fragments together could confer nodulation ability on soybeans when present in Sym plasmid-cured (Sym-) and wild-type (Sym+) Rhizobium strains or in a Ti plasmid-cured Agrobacterium tumefaciens strain. Furthermore, the 2.8-kb EcoRI fragment alone was able to form nodulelike structures on Glycine max L. cv. "Peking" (soybean). Microscopic examination of these nodules revealed bacterial invasion of the cells, probably via root hair penetration. Bacterial strains harboring plasmids carrying the 5.2- and 2.8-kb nod fragments elicited root-hair-curling responses on infection. These data suggest that the genes responsible for host range determination and some of the early events of nodulation may be coded for by the 5.2-kb HindIII and 2.8-kb EcoRI fragments.  相似文献   

7.
We identified and sequenced the regulatory syrM and nodD3 genes of Rhizobium meliloti 41. Both genes were shown to contribute to optimal nodulation of alfalfa. In R. meliloti strains carrying syrM and nodD3 on plasmid, the nod genes are expressed constitutively, resulting in host-range extension to siratro. This is due to the presence of multiple syrM copies, suggesting that SyrM participates directly in nod gene activation. NodD3 activates nod genes in conjunction with flavonoids and enhances syrM expression, which is controlled also by its own product, NodD2, and two putative trans-acting factors. nodD3 is regulated by SyrM, NodD1, nodD3, the repressor NoIR, and two putative factors.  相似文献   

8.
9.
Regulation of Syrm and Nodd3 in Rhizobium Meliloti   总被引:4,自引:0,他引:4       下载免费PDF全文
J. A. Swanson  J. T. Mulligan    S. R. Long 《Genetics》1993,134(2):435-444
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is an inducer-independent activator of nod operons. We previously observed that nodD3 carried on a multicopy plasmid required another closely linked gene, syrM, for constitutive nod operon expression. Here, we show that syrM activates expression of the nodD3 gene, and that nodD3 activates expression of syrM. The two genes constitute a self-amplifying positive regulatory circuit in both cultured Rhizobium and cells within the symbiotic nodule. We find little effect of plant inducers on the circuit or on expression of nodD3 carried on pSyma. This regulatory circuit may be important for regulation of nod genes within the developing nodule.  相似文献   

10.
Rhizobium meliloti nod genes are required for the infection of alfalfa. Induction of the nodC gene depends on a chemical signal from alfalfa and on nodD gene expression. By using a nodC-lacZ fusion, we have shown that the induction of the R. meliloti nodC gene and the expression of nodD occur at almost normal levels in other Rhizobium backgrounds and in Agrobacterium tumefaciens, but not in Escherichia coli. Xanthomonas campestris, or Pseudomonas savastanoi. Our results suggest that bacterial genes in addition to nodDABC are required for nod gene response to plant cells. We have found that inducing activity is present in other plant species besides alfalfa. Acetosyringone, the A. tumefaciens vir gene inducer, does not induce nodC.  相似文献   

11.
12.
13.
Bacteria belonging to the family Rhizobiaceae may establish beneficial or harmful relationships with plants. The legume endosymbionts contain nod and nif genes responsible for nodule formation and nitrogen fixation, respectively, whereas the pathogenic strains carry vir genes responsible for the formation of tumors or hairy roots. The symbiotic and pathogenic strains currently belong to different species of the genus Rhizobium and, until now, no strains able to establish symbiosis with legumes and also to induce tumors or hairy roots in plants have been reported. Here, we report for the first time the occurrence of two rhizobial strains (163C and ATCC11325T) belonging to Rhizobium rhizogenes able to induce hairy roots or tumors in plants and also to nodulate Phaseolus vulgaris under natural environmental conditions. Symbiotic plasmids (pSym) containing nod and nif genes and pTi- or pRi-type plasmids containing vir genes were found in these strains. The nodD and nifH genes of the strains from this study are phylogenetically related to those of Sinorhizobium strains nodulating P. vulgaris. The virA and virB4 genes from strain 163C are phylogenetically related to those of R. tumefaciens C58, whereas the same genes from strain ATCC 11325T are related to those of hairy root-inducing strains. These findings may be of high relevance for the better understanding of plant-microbe interactions and knowledge of rhizobial phylogenetic history.  相似文献   

14.
We examined the contribution of a cryptic plasmid, pRmeGR4b, to the nodulation of Medicago sativa by strain GR4 of Rhizobium meliloti. A 905-base-pair PstI DNA fragment in pRmeGR4b was found to hybridize DNA of the R. meliloti fixA promoter region as a probe. Sequence analysis of the PstI fragment showed a 206-base-pair region displaying high homology with the DNA upstream of the RNA start points of the P1 and P2 symbiotic promoters. Putative nif promoter consensus sequences were conserved in this DNA segment. Expression of DNA downstream of the nif promoterlike sequence, monitored by beta-galactosidase activity of different lacZ fusions, was demonstrated to depend on a functional nifA gene, both in microaerobically free-living cells and in nodules. Individual transposon Tn3-HoHo1 insertions in this DNA region caused a reduced nodulation competitiveness. This new symbiotic region, occupying approximately 5 kilobases of pRmeGR4b DNA, was called nfe (nodule formation efficiency).  相似文献   

15.
The nodulation genes of Mesorhizobium sp. (Astragalus sinicus) strain 7653R were cloned by functional complementation of Sinorhizobium meliloti nod mutants. The common nod genes, nodD, nodA, and nodBC, were identified by heterologous hybridization and sequence analysis. The nodA gene was found to be separated from nodBC by approximately 22 kb and was divergently transcribed. The 2. 0-kb nodDBC region was amplified by PCR from 24 rhizobial strains nodulating A. sinicus, which represented different chromosomal genotypes and geographic origins. No polymorphism was found in the size of PCR products, suggesting that the separation of nodA from nodBC is a common feature of A. sinicus rhizobia. Sequence analysis of the PCR-amplified nodA gene indicated that seven strains representing different 16S and 23S ribosomal DNA genotypes had identical nodA sequences. These data indicate that, whereas microsymbionts of A. sinicus exhibit chromosomal diversity, their nodulation genes are conserved, supporting the hypothesis of horizontal transfer of nod genes among diverse recipient bacteria.  相似文献   

16.
All Rhizobium strains examined to date have one or multiple alleles of nodD. At least one copy of nodD and the presence of flavonoid exudates are required for nod gene induction and nodulation. Sinorhizobium fredii USDA191 has two copies of nodD. In this study, we demonstrate that inactivation of either copy of nodD caused a reduction in basal levels of expression of nodC. Extra copies of nodD1 had no effect on the expression of nodC when compared with the wild type, but extra copies of nodD2 abolished the inducer requirement, thereby rendering nodC constitutive. A nodD1 mutant was unable to nodulate soybean cultivars 'Peking' and 'McCall'. Inactivation of nodD2 or addition of extra copies of nodD1 or nodD2 caused delayed nodulation on Peking, and reduced the number of nodules on McCall. Both nodD alleles of S. fredii USDA191 appear to be involved in regulation of exopolysaccharide production; however, nodD2 appears to be more important in this respect than nodD1.  相似文献   

17.
Rhizobium fredii is a fast-growing rhizobium isolated from the primitive Chinese soybean cultivar Peking and from the wild soybean Glycine soja. This rhizobium harbors nif genes on 150- to 200-megadalton plasmids. By passage on acridine orange plates, we obtained a mutant of R. fredii USDA 206 cured of the 197-megadalton plasmid (USDA 206C) which carries both nif and nod genes. This strain, however, has retained its symbiotic effectiveness. Probing EcoRI digests of wild-type and cured plasmid DNA with a 2.2-kilobase nif DH fragment from Rhizobium meliloti has shown four homologous fragments in the wild-type strain (4.2, 4.9, 10, and 11 kilobases) and two fragments in the cured strain (4.2 and 10 kilobases). EcoRI digests of total DNA show four major bands of homology (4.2, 4.9, 5.8, and 13 kilobases) in both the wild-type and cured strains. The presence of major bands of homology in the total DNA not present in the plasmid DNA indicated chromosomal nif genes. Probing of HindIII digests of total and plasmid DNA led to the same conclusion. Hybridization to the smaller plasmids of USDA 206 and USDA 206C showed the presence of nif genes on at least one of these plasmids, explaining the nif homology in the USDA 206C plasmid digests.  相似文献   

18.
Rhizobium fredii is a fast-growing rhizobium isolated from the primitive Chinese soybean cultivar Peking and from the wild soybean Glycine soja. This rhizobium harbors nif genes on 150- to 200-megadalton plasmids. By passage on acridine orange plates, we obtained a mutant of R. fredii USDA 206 cured of the 197-megadalton plasmid (USDA 206C) which carries both nif and nod genes. This strain, however, has retained its symbiotic effectiveness. Probing EcoRI digests of wild-type and cured plasmid DNA with a 2.2-kilobase nif DH fragment from Rhizobium meliloti has shown four homologous fragments in the wild-type strain (4.2, 4.9, 10, and 11 kilobases) and two fragments in the cured strain (4.2 and 10 kilobases). EcoRI digests of total DNA show four major bands of homology (4.2, 4.9, 5.8, and 13 kilobases) in both the wild-type and cured strains. The presence of major bands of homology in the total DNA not present in the plasmid DNA indicated chromosomal nif genes. Probing of HindIII digests of total and plasmid DNA led to the same conclusion. Hybridization to the smaller plasmids of USDA 206 and USDA 206C showed the presence of nif genes on at least one of these plasmids, explaining the nif homology in the USDA 206C plasmid digests.  相似文献   

19.
To analyse the regulation of the nodulation (nod) genes of Rhizobium meliloti RCR2011 we have isolated lacZ gene fusions to a number of common, host-range and regulatory nod genes, using the mini-Mu-lac bacteriophage transposon MudII1734. Common (nodA, nodC, nod region IIa) and host-range (nodE, nodG, nodH) genes were found to be regulated similarly. They were activated (i) by the regulatory nodD1 gene in the presence of flavones such as chrysoeriol, luteolin and 7,3',4'-trihydroxyflavone, (ii) by nodD2 in the presence of alfalfa root exudate but not with the NodD1-activating flavones, and (iii) by the regulatory genes syrM-nodD3 even in the absence of plant inducers. Thus common and host-range nod genes belong to the same regulon. In contrast to the nodD1 gene, the regulatory nodD3 gene was not expressed constitutively and exhibited a complex regulation. It required syrM for expression, was activated by nodD1 in the presence of luteolin and was positively autoregulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号