首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory tests were conducted with four organophosphorus insecticides, Bay 37289 (O-ethyl O-2,4,5-trichlorophenyl ethylphosphonothioate), diazinon [O,O-diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate], Dursban (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate), and Zinophos (O,O-diethyl O-2-pyrazinyl phosphorothioate), applied to a sandy loam at rates of 10 and 100 mug/g to determine whether these materials caused any serious effects on microbial activities related to soil fertility. All insecticides showed an effect on fungi and bacteria for the first and second week of incubation, but, subsequently, the populations returned to levels similar to those obtained in the controls. All insecticide applications increased ammonium production, but, in some instances, there appeared to be a slight depression of nitrification. Sulfur oxidation was equal to or better than that obtained with untreated soil in most cases. There was no significant effect on phosphorus mineralization. Oxygen consumption indicated that microbial respiration increased in proportion to the concentration of insecticides, suggesting the possibilities of microbial degradation of the insecticides or their degradation products and of uncoupling oxidative phosphorylation.  相似文献   

2.
In an acid forest soil of pH 4.0 to 4.2 amended with glucose, 1.0 mug of nitrite-N per g of soil inhibited the rate of O(2) utilization and CO(2) evolution. The inhibition was evident only for several hours after nitrite addition, and the subsequent rate of glucose mineralization was the same as in soil not receiving nitrite. The decomposition of protein hydrolysate was reduced by 10 mug of nitrite-N per g of soil but not lower concentrations, and the inhibition of this process by 20 mug of nitrite-N per g had dissipated after 24 h. Nitrite disappeared readily from this soil. More than 20 mug of bisulfite-S per g of soil was required to inhibit glucose decomposition. The data suggest that the possible antimicrobial effects of low levels of NO(2), which give rise to nitrite in soil, require further evaluation.  相似文献   

3.
Interaction of Ag with communities of soil saprotrophic organisms was studied in two different soils using a metagenomic approach. Three levels of Ag were applied to the soil samples: 0, 0.008 and 0.505?μg Ag/g soil. Silver was applied in mineral form as well as naturally bound in dry fruit-body biomass of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita solitaria. Contrasting behavior of fungi and bacteria in reaction to Ag dosages was observed. The majority of bacterial ribotypes tended to prefer the soil with low doses of Ag, the ribotypes of fungi were more abundant in untreated soils and soils treated with the highest Ag concentration. Organically bound and mineral forms of Ag did not differ substantially in their effects on microbes in samples. The results indicate that decomposing Ag-rich fungal biomass can significantly alter the soil microbiota. This can contribute to formation of spot-like non-homogeneities in soil microbial distribution.  相似文献   

4.
运用磷脂脂肪酸(phospholipid fatty acid,PLFA)和Biolog方法,研究了秸秆不还田不施肥(CK)、秸秆还田+尿素1(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=0∶6∶2∶2,T1)、秸秆还田+尿素2(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3∶3∶2∶2,T2)、秸秆还田+沼液+尿素(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3(沼液)∶3(2沼液+1尿素)∶2(尿素)∶2(尿素),T3) 4种氮肥运筹方式对水稻各生育期(分蘖期、孕穗期、成熟期)土壤微生物群落结构的影响。结果表明: 1)T3处理显著提高了各生育期土壤中的有效氮含量,其中成熟期有效氮含量显著高于分蘖期和孕穗期;T1~T3处理的有效磷和速效钾含量在各生育期均高于CK,且分蘖期的含量高于孕穗期和成熟期;稻田各生育期与各处理的交互作用对土壤有效氮、有效磷、速效钾含量均有显著影响;2)T3能提高稻田土壤中微生物碳源代谢强度,碳水化合物、氨基酸、聚合物、羧酸是稻田土壤微生物利用的主要碳源,稻田各生育期与各处理的交互作用对微生物利用碳水化合物和羧酸的能力有显著影响;3)T2、T3能显著提高土壤微生物生物量;T2处理真菌/细菌比较高,以真菌为主导,更有利于稻田土壤生态系统的稳定。表明秸秆还田同步施用氮肥(尿素或沼液)能提高土壤微生物活性,改善土壤环境。  相似文献   

5.
Influence of available aluminium on soil micro-organisms   总被引:1,自引:0,他引:1  
P. ILLMER, K. MARSCHALL AND F. SCHINNER. 1995. Forest soils were selected which covered a wide range of aluminium concentrations (7 to μmol g-1dry matter), but which differed as little as possible from one another in their soil chemical characteristics, including pH. These soils were examined with respect to microbial biomass and respiration, activity of cellulase, N-mineralization, colony-forming units of bacteria and fungi, and the concentrations of several inorganic soil components. The influences of altitude, climate, vegetation and, especially, of soil acidity could be kept to a minimum and so differences between the soil microfloras could clearly be attributed to Al concentration.
Al concentration was recognized to be the main inhibiting factor for the microbial biomass in soil. While N-mineralization was severely inhibited by aluminium, cellulase activity was hardly affected by increasing Al concentrations.
By taking the Al concentration along with various other soil chemical parameters a linear model could be developed that allowed more than 98% of the variability of the microbial biomass in soil to be explained.  相似文献   

6.
Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies   总被引:14,自引:0,他引:14  
Treseder KK 《Ecology letters》2008,11(10):1111-1120
Nitrogen (N) enrichment is an element of global change that could influence the growth and abundance of many organisms. In this meta-analysis, I synthesized responses of microbial biomass to N additions in 82 published field studies. I hypothesized that the biomass of fungi, bacteria or the microbial community as a whole would be altered under N additions. I also predicted that changes in biomass would parallel changes in soil CO2 emissions. Microbial biomass declined 15% on average under N fertilization, but fungi and bacteria were not significantly altered in studies that examined each group separately. Moreover, declines in abundance of microbes and fungi were more evident in studies of longer durations and with higher total amounts of N added. In addition, responses of microbial biomass to N fertilization were significantly correlated with responses of soil CO2 emissions. There were no significant effects of biomes, fertilizer types, ambient N deposition rates or methods of measuring biomass. Altogether, these results suggest that N enrichment could reduce microbial biomass in many ecosystems, with corresponding declines in soil CO2 emissions.  相似文献   

7.
禾草内生真菌在宿主植物的茎叶等地上组织中普遍存在,不仅能够提高禾草对生物与非生物逆境的抗性,而且能够对周围环境中的不同微生物类群产生影响。主要总结了禾草Neotyphodium/Epichlo内生真菌对病原真菌、丛枝菌根真菌和土壤微生物的影响及其作用机理。发现禾草内生真菌普遍存在对病原真菌的抑制作用,而对丛枝菌根真菌存在不对称的竞争作用,且因种类而异。禾草内生真菌对土壤微生物群落的作用则会随着土壤类型和时间等外界因素发生变化。禾草内生真菌对不同类群微生物的影响机制主要包括:通过生态位竞争、抑菌物质分泌、诱导抗病性等对病原真菌造成影响;通过根系化学物质释放、营养元素调节、侵染条件差异等对丛枝菌根真菌造成影响;通过根际沉积物和凋落物等对土壤微生物群落造成影响。禾草内生真菌产生的生物碱能提高宿主植物对包括昆虫在内草食动物采食的抗性,影响病原菌的侵入、定殖和扩展;根组织分泌物中包含次生代谢产物能够抑制菌根真菌、土传病原真菌及其它土壤微生物的侵染与群落组成;也可能通过次生代谢物影响禾草的其它抗性。因此,禾草内生真菌在植物-微生物系统中的作用应该给予更多的关注和深入研究。  相似文献   

8.
森林次生演替和土壤层次对微生物群落结构的影响   总被引:2,自引:0,他引:2  
森林次生演替与生态系统结构和功能的动态变化密切相关。大多数研究主要关注植物群落以及土壤有机碳(SOC)的变化,然而土壤微生物群落如何响应森林次生演替还需要进一步探究。本研究以长白山森林次生演替序列(20、80、120、200和≥300年)和两个土壤层次为对象,采用磷脂脂肪酸微生物标志物,探究温带森林次生演替过程中地下微生物群落结构变化。森林次生演替改变了土壤微生物群落结构,主要归因于某些特定微生物类群的变化,演替前期革兰氏阴性菌和腐生真菌占主导,而在演替后期革兰氏阳性菌和丛枝菌根真菌占主导。另外,土壤有机质数量和质量差异是影响微生物群落结构和生物量的主要环境因素。森林演替前期和中期增加的SOC含量促进了微生物生物量,而演替后期增加的难分解芳香族有机组分抑制了微生物生物量合成。土壤层次间理化性质的差异导致微生物群落变化,有机质层高的SOC以及氮含量导致更多微生物生物量的合成。微生物群落在时间和空间尺度的变化及其驱动因素反映了生态系统结构和功能对环境变化的响应。  相似文献   

9.
Fungi (Rhizopus stolonifer, Trichoderma viride, Fusarium oxysporum f. sp. conglutinans, Cunninghamella echinulata, and several species of Aspergillus and Penicillium) tolerated higher concentrations of cadmium (Cd) when grown in soil than when grown on laboratory media, indicating that soil mitigated the toxic effects of Cd. In soil amended with clay minerals, montmorillonite provided partial or total protection against fungistatic effects of Cd, whereas additions of kaolinite provided little or no protection. Growth rates of Aspergillus niger were inhibited to a greater extent by 100 or 250 mug of Cd per g in soil adjusted to pH 7.2 than in the same soil at its natural pH of 5.1. However, there were no differences in the growth rates of Aspergillus fischeri with 100 or 250 mug of Cd per g in the same soil, whether at pH 5.1 or adjusted to pH 7.2. Growth of A. niger and A. fischeri in a soil contaminated with a low concentration of Cd (i.e., 28 mug/g), obtained from a site near a Japanese smelter, did not differ significantly from growth in a soil collected some distance away and containing 4 mug of Cd per g. Growth of A. niger in sterile soil amended with 100 mug of Cd per g and inoculated with Bacillus cereus or Agrobacterium tumefaciens was reduced to a greater extent than in the same soil containing 100 mug of Cd per g but no bacteria. The inhibitory effects of Agrobacterium radiobacter to A. niger were slightly reduced in the presence of 100 mug of Cd per g, whereas the inhibitory effects of Serratia marcescens were enhanced.  相似文献   

10.
Kandeler  E.  Tscherko  D.  Bardgett  R.D.  Hobbs  P.J.  Kampichler  C.  Jones  T.H. 《Plant and Soil》1998,202(2):251-262
We investigate the response of soil microorganisms to atmospheric CO2 and temperature change within model terrestrial ecosystems in the Ecotron. The model communities consisted of four plant species (Cardamine hirsuta, Poa annua, Senecio vulgaris, Spergula arvensis), four herbivorous insect species (two aphids, a leaf-miner, and a whitefly) and their parasitoids, snails, earthworms, woodlice, soil-dwelling Collembola (springtails), nematodes and soil microorganisms (bacteria, fungi, mycorrhizae and Protista). In two successive experiments, the effects of elevated temperature (ambient plus 2 °C) at both ambient and elevated CO2 conditions (ambient plus 200 ppm) were investigated. A 40:60 sand:Surrey loam mixture with relatively low nutrient levels was used. Each experiment ran for 9 months and soil microbial biomass (Cmic and Nmic), soil microbial community (fungal and bacterial phospholipid fatty acids), basal respiration, and enzymes involved in the carbon cycling (xylanase, trehalase) were measured at depths of 0–2, 0–10 and 10–20 cm. In addition, root biomass and tissue C:N ratio were determined to provide information on the amount and quality of substrates for microbial growth.Elevated temperature under both ambient and elevated CO2 did not show consistent treatment effects. Elevation of air temperature at ambient CO2 induced an increase in Cmic of the 0–10 cm layer, while at elevated CO2 total phospholipid fatty acids (PLFA) increased after the third generation. The metabolic quotient qCO2 decreased at elevated temperature in the ambient CO2 run. Xylanase and trehalase showed no changes in both runs. Root biomass and C:N ratio were not influenced by elevated temperature in ambient CO2. In elevated CO2, however, elevated temperature reduced root biomass in the 0–10 cm and 30–40 cm layers and increased N content of roots in the deeper layers. The different response of root biomass and C:N ratio to elevated temperature may be caused by differences in the dynamics of root decomposition and/or in allocation patterns to coarse or fine roots (i.e. storage vs. resource capture functions). Overall, our data suggests that in soils of low nutrient availability, the effects of climate change on the soil microbial community and processes are likely to be minimal and largely unpredicatable.  相似文献   

11.
Predicted changes in climate associated with increased greenhouse gas emissions can cause increases in global mean temperature and changes in precipitation regimes. These changes may affect key soil processes, e.g., microbial CO(2) evolution and biomass, mineralization rates, primary productivity, biodiversity, and litter decomposition, which play an important role in carbon and nutrient cycling in terrestrial ecosystems. Our study examined the changes in litter microbial communities and decomposition along a climatic gradient, ranging from arid desert to humid Mediterranean regions in Israel. Wheat straw litter bags were placed in arid, semi-arid, Mediterranean, and humid Mediterranean sites. Samples were collected seasonally over a 2-year period in order to evaluate mass loss, litter moisture, C/N ratio, bacterial colony-forming units (CFUs), microbial CO(2) evolution and biomass, microbial functional diversity, and catabolic profile. Decomposition rate was the highest during the first year of the study at the Mediterranean and arid sites. Community-level physiological profile and microbial biomass were the highest in summer, while bacterial CFUs were the highest in winter. Microbial functional diversity was found to be highest at the humid Mediterranean site, whereas substrate utilization increased at the arid site. Our results support the assumption that climatic factors control litter degradation and regulate microbial activity.  相似文献   

12.
土壤微生物是土壤养分循环的关键驱动者,对土壤环境变化感应明显,氮是陆地生态系统的限制元素之一,其改变可能会给生态系统物种多样性造成一定影响.为了解高寒湿地土壤微生物组成对氮添加的响应,以青海湖流域高寒湿地为研究对象,通过(0 g·m-2、0.5 g·m-2、1 g·m-2、1.5 g·m-2、2 g·m-2、2.5 g...  相似文献   

13.
蓝丽英  寥蓉  杨万勤  吴福忠  杨帆  郭彩虹  袁吉  谭波 《生态学报》2017,37(23):7956-7964
萘作为土壤动物化学抑制剂已在土壤动物生态功能的研究中广泛使用,但其非目标效应使其应用仍存在很大的不确定性。为了解在亚高山森林土壤应用萘抑制土壤动物群落的非目标效应,以川西亚高山森林土壤为研究对象,采用微缩实验研究了土壤微生物生物量、丰度和磷脂脂肪酸对萘胁迫的短期响应。结果表明,萘处理和对照的土壤微生物生物量碳(MBC)、真菌丰度以及细菌、真菌、革兰氏阳性菌(G~+)和革兰氏阴性菌(G~-)PLFAs含量在整个培养期间表现为降低的变化趋势,二者的土壤微生物生物量碳和G~+PLFAs含量以培养52d最低,细菌、真菌和G~-PLFAs含量以培养的45d最低。萘处理和对照的微生物生物量氮(MBN)含量表现出先升高后降低的动态,微生物生物量碳氮比(MBC/MBN)则表现为相反趋势。对照的真菌/细菌PLFAs比值呈现先升高后降低的动态,以培养的17d最高,但萘处理的真菌/细菌PLFAs比值无明显变化规律;萘处理的G~+/G~-PLFAs比值表现为降低的变化趋势,对照的G~+/G~-PLFAs比值表现为先降低后升高的趋势。萘处理仅显著影响了G~+/G~-PLFAs比值,但萘处理和采样时间的交互作用显著影响MBC/MBN、细菌丰度、真菌/细菌丰度比以及细菌、真菌的PLFAs含量、真菌/细菌PLFAs比值、G~+/G~-PLFAs比值。萘作为土壤动物抑制剂对川西亚高山森林土壤微生物群落的非目标效应具有时间变异性。  相似文献   

14.
This study reports the effects of long-term elevated atmospheric CO2 on root production and microbial activity, biomass, and diversity in a chaparral ecosystem in southern California. The free air CO2 enrichment (FACE) ring was located in a stand dominated by the woody shrub Adenostoma fasciculatum. Between 1995 and 2003, the FACE ring maintained an average daytime atmospheric CO2 concentration of 550 ppm. During the last two years of operation, observations were made on soil cores collected from the FACE ring and adjacent areas of chaparral with ambient CO2 levels. Root biomass roughly doubled in the FACE plot. Microbial biomass and activity were related to soil organic matter (OM) content, and so analysis of covariance was used to detect CO2 effects while controlling for variation across the landscape. Extracellular enzymatic activity (cellulase and amylase) and microbial biomass C (chloroform fumigation-extraction) increased more rapidly with OM in the FACE plot than in controls, but glucose substrate-induced respiration (SIR) rates did not. The metabolic quotient (field respiration over potential respiration) was significantly higher in FACE samples, possibly indicating that microbial respiration was less C limited under high CO2. The treatments also differed in the ratio of SIR to microbial biomass C, indicating a metabolic difference between the microbial communities. Bacterial diversity, described by 16S rRNA clone libraries, was unaffected by the CO2 treatment, but fungal biomass was stimulated. Furthermore, fungal biomass was correlated with cellulase and amylase activities, indicating that fungi were responsible for the stimulation of enzymatic activity in the FACE treatment.  相似文献   

15.
通过调查岷江干旱河谷两河口、飞虹、撮箕和牟托4个样地优势灌丛及其灌丛间空地的表土土壤物理化学性质和微生物群落组成,探讨植物灌丛群落对土壤微生物群落组成的影响。研究发现不同灌丛种类对土壤微生物群落组成以及土壤物理化学性质并没有显著影响,而同一样地灌丛与空地间的差异却较为显著。灌丛下比空地土壤中具有更高的有机质、养分含量,更高的土壤含水量和更低的容重,而灌丛下相对富集的养分资源是造成灌丛与空地间微生物群落组成差异的主要原因。不同样地影响微生物群落的主要因子存在一定差异,但与氮相关的因子(总氮、有效氮、碳/氮比)对土壤微生物群落着非常重要的影响,特别是对土壤微生物群落总生物量和细菌类群(革兰氏阳性菌、革兰氏阴性菌、细菌等)。虽然不同灌丛和空地下土壤中细菌群落都没有显著地变化,但真菌和菌根真菌却明显的在灌丛下富集。在飞虹和牟托样地,总磷和碳/磷比与真菌类群,主要指真菌和菌根真菌,表现出显著正相关性,这或许反映了真菌类群对于该区域磷循环的重要作用。研究结果揭示了灌丛植被在干旱河谷地区地下生态系统中的重要作用,以及氮、磷这两种养分元素对土壤微生物群落的重要影响。同时,未来对于干旱河谷地区植物-土壤关系的研究应该关注真菌和菌根真菌类群的作用。  相似文献   

16.
海拔对辽东栎林地土壤微生物群落的影响   总被引:10,自引:0,他引:10  
以北京东灵山辽东栎林地土壤为对象,运用氯仿熏蒸-浸提法及磷脂脂肪酸分析(PLFA)法,研究林木生长季节土壤微生物群落随海拔梯度的变化特征.结果表明:随着海拔升高,辽东栎林土壤微生物生物量碳、氮,以及微生物各类群含量均有差异但不显著;土壤细菌/真菌升高,而革兰氏阳性菌(G+)/革兰氏阴性菌(G-)降低.土壤微生物生物量碳、氮以及细菌、真菌、G+细菌、G-细菌的含量与土壤含水量、有机碳、全氮呈显著正相关,土壤真菌含量与土壤碳氮比值呈正相关.土壤微生物群落组成结构(细菌/真菌和G+细菌/G-细菌)的变化主要受土壤温度和土壤含水量的显著影响,说明土壤微生物群落结构对环境条件的变化敏感.随着全球变暖的加剧,暖温带辽东栎林地土壤真菌和G+细菌的比例有升高的趋势.  相似文献   

17.
Enumerations of colony-forming units of aerobic bacteria and fungi at Marion Island (46°54S, 37°45E) showed that the mire and bog peats investigated possessed greater numbers of microorganisms on a dry soil weight basis than did the slope fernbrake soils but that counts from both sites were similar per unit soil volume. Afjaeldmark soil of an exposed rocky ridge contained very low microbial populations. Manuring by sea-birds and seals caused an increase in levels of soil N and P and in the numbers of bacteria and fungi. Regression analyses indicated that inorganic N and soil pH explained more of the variation in bacterial and fungal counts respectively than all other soil parameters included in the regression. Variation in botanical composition between the sites was examined using multivariate analysis and the resulting pattern compared with the soil microorganism and nutrient levels. This analysis emphasized the importance of manuring influences in elevating NH4-N and bacterial levels in the soil and allowing the occurrence of a vegetation cover dominated by copriphilous species. No correlation occurred between site botanical factors and soil fungi counts.  相似文献   

18.
Although anthropogenic land use has major impacts on the exchange of soil and atmosphere gas in general, relatively little is known about its impacts on carbon monoxide. We compared soil-atmosphere CO exchanges as a function of land use, crop type, and tillage treatment on an experimental farm in Par?na, Brazil, that is representative of regionally important agricultural ecosystems. Our results showed that cultivated soils consumed CO at rates between 3 and 6 mg of CO m(-2) day(-1), with no statistically significant effect of tillage method or crop. However, CO exchange for a pasture soil was near zero, and an unmanaged woodlot emitted CO at a rate of 9 mg of CO m(-2) day(-1). Neither nitrite, aluminum sulfate, nor methyl fluoride additions affected CO consumption by tilled or untilled soils from soybean plots, indicating that CO oxidation did not depend on ammonia oxidizers and that CO oxidation patterns differed in part from patterns reported for forest soils. The apparent K(m) for CO uptake, 5 to 11 ppm, was similar to values reported for temperate forest soils; V(max) values, approximately 1 micro g of CO g (dry weight)(-1) h(-1), were comparable for woodlot and cultivated soils in spite of the fact that the latter consumed CO under ambient conditions. Short-term (24-h) exposure to elevated levels of CO (10% CO) partially inhibited uptake at lower concentrations (i.e., 100 ppm), suggesting that the sensitivity to CO of microbial populations that are active in situ differs from that of known carboxydotrophs. Soil-free soybean and corn roots consumed CO when they were incubated with 100-ppm concentrations and produced CO when they were incubated with ambient concentrations. These results document for the first time a role for cultivated plant roots in the dynamics of CO in an agricultural ecosystem.  相似文献   

19.
Tu LH  Dai HZ  Hu TX  Zhang J  Luo SH 《应用生态学报》2011,22(4):829-836
From January 2008 to February 2009, a field experiment was conducted in Rainy Area of West China to understand the effects of nitrogen (N) deposition on the soil respiration in a Bambusa pervariabilis x Dendrocala mopsi plantation. Four treatments were installed, i. e., no N added (control), 5 g N m(-2) a(-1) (low-N), 15 g N m(-2) a(-1) (medium-N), and 30 g N m(-2) a(-1) (high-N), and soil respiration rate was determined by infra-red CO2 analyzer. In the plantation, soil respiration rate had an obvious seasonal change, with the maximum in July and the minimum in January. In control plot, the annual cumulative soil respiration was (389 +/- 34) g m(-2) a(-1). Soil respiration rate had significant positive exponential relationships with soil temperature at 10 cm depth and air temperature, and significant positive linear relationships with soil microbial biomass carbon (MBC) and nitrogen (MBN). Simulated N deposition promoted soil respiration significantly, with significant differences between the low- and medium-N and the control but no significant difference between high-N and the control. In control plot, surface soil (0-20 cm) MBC and MBN were 0.460 and 0.020 mg g(-1), respectively. In N-added plots, both the MBC and the MBN had significant increase. The fine root density in surface soil was 388 g m(-2), which was less affected by simulated N deposition. The soil respiration Q10 value calculated from soil temperature at 10 cm depth and air temperature was 2.66 and 1.87, respectively, and short-term N deposition had lesser effects on the Q10 value. The variation of soil respiration in the plantation was mainly controlled by temperature and soil microbial biomass, and simulated N deposition could increase the CO2 emission via increasing soil microbial biomass.  相似文献   

20.
有机物料在维持土壤微生物体氮库中的作用   总被引:49,自引:2,他引:49  
李世清  李生秀 《生态学报》2001,21(1):136-142
采用室内和田间培养试验,研究了有机物料矿化过程中土壤微生物体氮的变化,测定结果表明,有机物料对矿化过程和微生物体氮的影响,既与有机物料本身性质和组成有关,也与土壤肥力水平和施氮与否有关。加入C/N比高的有机物料后,微生物对矿质氮的净固定持续时间长,而加入C/N比小的则固定时间短;高肥力土壤上的固定时间比低肥力土壤短。不同有机物料对土壤微生物体氮的影响不同。从加绿豆茎叶、小麦茎叶、未腐解马粪、腐熟马粪、腐熟猪粪到厩肥,土壤微生物体氮依次减小,提供的有效能源物质丰富(如绿豆茎叶)或C/N比较高(如小麦茎叶)时影响效果突出。土壤肥力不同,有机物料对微生物体的影响效果不同,在低肥力土壤的效果突出,约为高肥力土壤的4倍,因此,在评价有机物料对土壤微生物体氮的影响时,既考虑有有机物料的性质和组成,也考虑土壤力水平、矿质氮含量和培养时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号