首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanophages infecting marine Synechococcus cells were frequently very abundant and were found in every seawater sample along a transect in the western Gulf of Mexico and during a 28-month period in Aransas Pass, Tex. In Aransas Pass their abundance varied seasonally, with the lowest concentrations coincident with cooler water and lower salinity. Along the transect, viruses infecting Synechococcus strains DC2 and SYN48 ranged in concentration from a few hundred per milliliter at 97 m deep and 83 km offshore to ca. 4 × 105 ml-1 near the surface at stations within 18 km of the coast. The highest concentrations occurred at the surface, where salinity decreased from ca. 35.5 to 34 ppt and Synechococcus concentrations were greatest. Viruses infecting strains SNC1, SNC2, and 838BG were distributed in a similar manner but were much less abundant (<10 to >5 × 103 ml-1). When Synechococcus concentrations exceeded ca. 103 ml-1, cyanophage concentrations increased markedly (ca. 102 to > 105 ml-1), suggesting that a minimum host density was required for efficient viral propagation. Data on the decay rate of viral infectivity d (per day), as a function of solar irradiance I (millimoles of quanta per square meter per second), were used to develop a relationship (d = 0.2610I - 0.00718; r2 = 0.69) for conservatively estimating the destruction of infectious viruses in the mixed layer of two offshore stations. Assuming that virus production balances losses and that the burst size is 250, ca. 5 to 7% of Synechococcus cells would be infected daily by viruses. Calculations based on contact rates between Synechococcus cells and infectious viruses produce similar results (5 to 14%). Moreover, balancing estimates of viral production with contact rates for the farthest offshore station required that most Synechococcus cells be susceptible to infection, that most contacts result in infection, and that the burst size be about 324 viruses per lytic event. In contrast, in nearshore waters, where ca. 80% of Synechococcus cells would be contacted daily by infectious cyanophages, only ca. 1% of the contacts would have to result in infection to balance the estimated virus removal rates. These results indicate that cyanophages are an abundant and dynamic component of marine planktonic communities and are probably responsible for lysing a small but significant portion of the Synechococcus population on a daily basis.  相似文献   

2.
Lytic viral production and lysogeny were investigated in cyanobacteria and heterotrophic bacteria during a bloom of Synechococcus spp. in a pristine fjord in British Columbia, Canada. Triplicate seawater samples were incubated with and without mitomycin C and the abundances of heterotrophic bacteria, cyanobacteria, total viruses and infectious cyanophage were followed over 24 h. Addition of mitomycin C led to increases in total viral abundance as well as the abundance of cyanophages infecting Synechococcus strain DC2. Given typical estimates of burst size, these increases were consistent with 80% of the heterotrophic bacteria and 0.6% of Synechococcus cells being inducible by the addition of mitomycin C. This is the highest percentage of lysogens reported for a natural microbial community and demonstrates induction in a marine Synechococcus population. It is likely that the cyanophage production following the addition of mitomycin C was much higher than that titered against a single strain of Synechococcus; hence this estimate is a minimum. In untreated seawater samples, lytic viral production was estimated to remove ca. 27% of the gross heterotrophic bacterial production, and a minimum of 1.0% of the gross cyanobacterial production. Our results demonstrate very high levels of lysogeny in the heterotrophic bacterial community, outside of an oligotrophic environment, and the presence of inducible lysogens in Synechococcus spp. during a naturally occurring bloom. These data emphasize the need for further examination of the factors influencing lytic and lysogenic viral infection in natural microbial communities.  相似文献   

3.
The abundance of cyanophages infecting marine Synechococcus spp. increased with increasing salinity in three Georgia coastal rivers. About 80% of the cyanophage isolates were cyanomyoviruses. High cross-infectivity was found among the cyanophages infecting phycoerythrin-containing Synechococcus strains. Cyanophages in the river estuaries were diverse in terms of their morphotypes and genotypes.  相似文献   

4.
Recent reports documenting very high viral abundances in seawater have led to increased interest in the role of viruses in aquatic environments and a resurgence of the hypothesis that viruses are significant agents of bacterial mortality. Synechococcus spp., small unicellular cyanobacteria that are important primary producers at the base of the marine food web, were used to assess this hypothesis. We isolated a diverse group of Synechococcus phages that at times reach titers of between 103 and 104 cyanophages per ml in both inshore and offshore waters. However, despite their diversity and abundance, we present evidence in support of the hypothesis that lytic phages have a negligible effect in regulating the densities of marine Synechococcus populations. Our results indicate that these bacterial communities are dominated by cells resistant to their co-occurring phages and that these viruses are maintained by scavenging on the relatively rare sensitive cells in these communities.  相似文献   

5.
Prevalence of highly host-specific cyanophages in the estuarine environment   总被引:2,自引:0,他引:2  
Cyanophages that infect coastal and oceanic Synechococcus have been studied extensively. However, no cyanophages infecting estuarine Synechococcus have been reported. In this study, seven cyanophages (three podoviruses, three siphoviruses and one myovirus) isolated from four estuarine Synechococcus strains were characterized in terms of their morphology, host range, growth and genetic features. All the podoviruses and siphoviruses were highly host specific. For the first time, the photosynthesis gene ( psbA ) was found in two podoviruses infecting estuarine Synechococcus . However, the psbA gene was not detected in the three siphoviruses. The psbA sequences from the two Synechococcus podoviruses clustered with some environmental psbA sequences, forming a unique cluster distantly related to previous known psbA clusters. Our results suggest that the psbA among Synechococcus podoviruses may evolve independently from the psbA of Synechococcus myoviruses. All three estuarine Synechococcus podoviruses contained the DNA polymerase ( pol ) gene, and clustered with other podoviruses that infect oceanic Synechococcus and Prochlorococcus , suggesting that the DNA pol is conserved among marine picocyanobacterial podoviruses. Prevalence of host-specific cyanophages in the estuary suggests that Synechococcus and their phages in the estuarine ecosystem may develop a host–phage relationship different from what have been found in the open ocean.  相似文献   

6.
Viruses are ubiquitous components of the marine ecosystem. In the current study we investigated seasonal variations in the viral community in Norwegian coastal waters by pulsed-field gel electrophoresis (PFGE). The results demonstrated that the viral community was diverse, displaying dynamic seasonal variation, and that viral populations of 29 different sizes in the range from 26 to 500 kb were present. Virus populations from 260 to 500 kb and dominating autotrophic pico- and nanoeukaryotes showed similar dynamic variations. Using flow cytometry and real-time PCR, we focused in particular on one host-virus system: Synechococcus spp. and cyanophages. The two groups covaried throughout the year and were found in the highest amounts in fall with concentrations of 7.3 x 10(4) Synechococcus cells ml(-1) and 7.2 x 10(3) cyanophage ml(-1). By using primers targeting the g20 gene in PCRs on DNA extracted from PFGE bands, we demonstrated that cyanophages were found in a genomic size range of 26 to 380 kb. The genetic richness of the cyanophage community, determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified g20 gene fragments, revealed seasonal shifts in the populations, with one community dominating in spring and summer and a different one dominating in fall. Phylogenetic analysis of the sequences originating from PFGE and DGGE bands grouped the sequences into three groups, all with homology to cyanomyoviruses present in cultures. Our results show that the cyanophage community in Norwegian coastal waters is dynamic and genetically diverse and has a surprisingly wide genomic size range.  相似文献   

7.
While it is well established that viruses play an important role in the structure of marine microbial food webs, few studies have directly addressed their role in large lake systems. As part of an ongoing study of the microbial ecology of Lake Erie, we have examined the distribution and diversity of viruses in this system. One surprising result has been the pervasive distribution of cyanophages that infect the marine cyanobacterial isolate Synechococcus sp. strain WH7803. Viruses that lytically infect this cyanobacterium were identified throughout the western basin of Lake Erie, as well as in locations within the central and eastern basins. Analyses of the gene encoding the g20 viral capsid assembly protein (a conservative phylogenetic marker for the cyanophage) indicate that these viruses, as well as amplicons from natural populations and the ballast of commercial ships, are related to marine cyanophages but in some cases form a unique clade, leaving questions concerning the native hosts of these viruses. The results suggest that cyanophages may be as important in freshwater systems as they are known to be in marine systems.  相似文献   

8.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

9.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters.  相似文献   

10.
Aim:  To isolate viruses of specific heterotrophic bacterial strains from marine environments using a host addition/virus amplification protocol (HAVAP) for use in phage/host systems.
Methods and Results:  Bacteria-free seawater samples containing natural viruses assemblages were inoculated with a single laboratory grown bacterial host of interest in a nutrient-enriched [peptone, Fe(III) and yeast extract] seawater suspension. These conditions enhanced the replication of only those virus(s) capable of infecting the host bacterium. After incubation, free viruses were recovered at concentrations ranging 105–1010 infectious virus particles per ml of seawater. Using this approach, 15 viruses were isolated and represented 12 unique phage/host systems. Two of the hosts tested were infected by more than one virus.
Conclusions:  Isolation of high concentrations of specific viruses is possible even if their initial concentrations in native waters are low. This approach allows the recovery of phage/host systems that may not be numerically dominant.
Significance and Impact of the Study:  This host enrichment protocol for virus detection and isolation is well-suited for aquatic viral ecology studies that require phage/host systems.  相似文献   

11.
Effective translation of the viral genome during the infection cycle most likely enhances its fitness. In this study, we reveal two different strategies employed by cyanophages, viruses infecting cyanobacteria, to enhance their translation efficiency. Cyanophages of the T7-like Podoviridae family adjust their GC content and codon usage to those of their hosts. In contrast, cyanophages of the T4-like Myoviridae family maintain genomes with low GC content, thus sometimes differing from that of their hosts. By introducing their own specific set of tRNAs, they appear to modulate the tRNA pools of hosts with tRNAs that fit the viral low GC preferred codons. We assessed the possible effects of those viral tRNAs on cyanophages and cyanobacterial genomes using the tRNA adaptation index, which measures the extent to which a given pool of tRNAs translates efficiently particular genes. We found a strong selective pressure to gain and maintain tRNAs that will boost translation of myoviral genes when infecting a high GC host, contrasted by a negligible effect on the host genes. Thus, myoviral tRNAs may represent an adaptive strategy to enhance fitness when infecting high GC hosts, thereby potentially broadening the spectrum of hosts while alleviating the need to adjust global parameters such as GC content for each specific host.  相似文献   

12.
13.

Background

The study of virus-host infectious association is important for understanding the functions and dynamics of microbial communities. Both cellular and fractionated viral metagenomic data generate a large number of viral contigs with missing host information. Although relative simple methods based on the similarity between the word frequency vectors of viruses and bacterial hosts have been developed to study virus-host associations, the problem is significantly understudied. We hypothesize that machine learning methods based on word frequencies can be efficiently used to study virus-host infectious associations.

Methods

We investigate four different representations of word frequencies of viral sequences including the relative word frequency and three normalized word frequencies by subtracting the number of expected from the observed word counts. We also study five machine learning methods including logistic regression, support vector machine, random forest, Gaussian naive Bayes and Bernoulli naive Bayes for separating infectious from non-infectious viruses for nine bacterial host genera with at least 45 infecting viruses. Area under the receiver operating characteristic curve (AUC) is used to compare the performance of different machine learning method and feature combinations. We then evaluate the performance of the best method for the identification of the hosts of contigs in metagenomic studies. We also develop a maximum likelihood method to estimate the fraction of true infectious viruses for a given host in viral tagging experiments.

Results

Based on nine bacterial host genera with at least 45 infectious viruses, we show that random forest together with the relative word frequency vector performs the best in identifying viruses infecting particular hosts. For all the nine host genera, the AUC is over 0.85 and for five of them, the AUC is higher than 0.98 when the word size is 6 indicating the high accuracy of using machine learning approaches for identifying viruses infecting particular hosts. We also show that our method can predict the hosts of viral contigs of length at least 1kbps in metagenomic studies with high accuracy. The random forest together with word frequency vector outperforms current available methods based on Manhattan and \(d_{2}^{*}\) dissimilarity measures. Based on word frequencies, we estimate that about 95% of the identified T4-like viruses in viral tagging experiment infect Synechococcus, while only about 29% of the identified non-T4-like viruses and 30% of the contigs in the study potentially infect Synechococcus.

Conclusions

The random forest machine learning method together with the relative word frequencies as features of viruses can be used to predict viruses and viral contigs for specific bacterial hosts. The maximum likelihood approach can be used to estimate the fraction of true infectious associated viruses in viral tagging experiments.
  相似文献   

14.
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.  相似文献   

15.
The distribution of viral and microbial abundance in the Key Largo, Fla., reef environment was measured. Viral abundance was measured by transmission electron microscope direct counts and plaque titer on specific bacterial hosts in water and sediment samples from Florida Bay (Blackwater Sound) and along a transect from Key Largo to the outer edge of the reef tract in Key Largo Sanctuary. Water column viral direct counts were highest in Blackwater Sound of Florida Bay (1.2 x 10(7) viruses per ml), decreased to the shelf break (1.7 x 10(6) viruses per ml), and were inversely correlated with salinity (r = -0.97). Viral direct counts in sediment samples ranged from 1.35 x 10(8) to 5.3 x 10(8)/cm(3) of sediment and averaged nearly 2 orders of magnitude greater than counts in the water column. Viral direct counts (both sediment and water column measurements) exceeded plaque titers on marine bacterial hosts (Vibrio natriegens and others) by 7 to 8 orders of magnitude. Water column viral abundance did not correlate with bacterial direct counts or chlorophyll a measurements, and sediment viral parameters did not correlate with water column microbial, viral, or salinity data. Coliphage, which are indicators of fecal pollution, were detected in two water column samples and most sediment samples, yet their concentrations were relatively low (<2 to 15/liter for water column samples, and <2 to 108/cm(3) of sediment). Our findings indicate that viruses are abundant in the Key Largo environment, particularly on the Florida Bay side of Key Largo, and that processes governing their distribution in the water column (i.e., salinity and freshwater input) are independent of those governing their distribution in the sediment environment.  相似文献   

16.
Fluorescently stained viruses were used as probes to label, identify, and enumerate specific strains of bacteria and cyanobacteria in mixed microbial assemblages. Several marine virus isolates were fluorescently stained with YOYO-1 or POPO-1 (Molecular Probes, Inc.) and added to seawater samples that contained natural microbial communities. Cells to which the stained viruses adsorbed were easily distinguished from nonhost cells; typically, there was undetectable binding of stained viruses to natural microbial assemblages containing >10(sup6) bacteria ml(sup-1) but to which host cells were not added. Host cells that were added to natural seawater were quantified with 99% (plusmn) 2% (mean (plusmn) range) efficiency with fluorescently labeled virus probes (FLVPs). A marine bacterial isolate (strain PWH3a), tentatively identified as Vibrio natriegens, was introduced into natural microbial communities that were either supplemented with nutrients or untreated, and changes in the abundance of the isolate were monitored with FLVPs. Simultaneously, the concentrations of viruses that infected strain PWH3a were monitored by plaque assay. Following the addition of PWH3a, the concentration of viruses infecting this strain increased from undetectable levels (<1 ml(sup-1)) to 2.9 x 10(sup7) and 8.3 x 10(sup8) ml(sup-1) for the untreated and nutrient-enriched samples, respectively. The increase in viruses was associated with a collapse in populations of strain PWH3a from ca. 30 to 2% and 43 to 0.01% of the microbial communities in untreated and nutrient-enriched samples, respectively. These results clearly demonstrate that FLVPs can be used to identify and quantify specific groups of bacteria in mixed microbial communities. The data show as well that viruses which are present at low abundances in natural aquatic viral communities can control microbial community structure.  相似文献   

17.
Since the first discovery of the very high virus abundance in marine environments, a number of researchers were fascinated with the world of "marine viruses", which had previously been mostly overlooked in studies on marine ecosystems. In the present paper, the possible role of viruses infecting marine eukaryotic microalgae is enlightened, especially summarizing the most up-to-the-minute information of marine viruses infecting bloom-forming dinoflagellates and diatoms. To author's knowledge, approximately 40 viruses infecting marine eukaryotic algae have been isolated and characterized to different extents. Among them, a double-stranded DNA (dsDNA) virus "HcV" and a single-stranded RNA (ssRNA) virus "HcRNAV" are the only dinoflagellate-infecting (lytic) viruses that were made into culture; their hosts are a bivalve-killing dinoflagellate Heterocapsa circularisquama. In this article, ecological relationship between H. circularisquama and its viruses is focused. On the other hand, several diatom-infecting viruses were recently isolated and partially characterized; among them, one is infectious to a pen-shaped bloom-forming diatom species Rhizosolenia setigera; some viruses are infectious to genus Chaetoceros which is one of the most abundant and diverse diatom group. Although the ecological relationships between diatoms and their viruses have not been sufficiently elucidated, viral infection is considered to be one of the significant factors affecting dynamics of diatoms in nature. Besides, both the dinoflagellate-infecting viruses and diatom-infecting viruses are so unique from the viewpoint of virus taxonomy; they are remarkably different from any other viruses ever reported. Studies on these viruses lead to an idea that ocean may be a treasury of novel viruses equipped with fascinating functions and ecological roles.  相似文献   

18.
The last two decades have revealed that phages (viruses that infect bacteria) are abundant and play fundamental roles in the Earth System, with the T4-like myoviruses (herein T4-like phages) emerging as a dominant 'signal' in wild populations. Here we examine 27 T4-like phage genomes, with a focus on 17 that infect ocean picocyanobacteria (cyanophages), to evaluate lateral gene transfer (LGT) in this group. First, we establish a reference tree by evaluating concatenated core gene supertrees and whole genome gene content trees. Next, we evaluate what fraction of these 'core genes' shared by all 17 cyanophages appear prone to LGT. Most (47 out of 57 core genes) were vertically transferred as inferred from tree tests and genomic synteny. Of those 10 core genes that failed the tree tests, the bulk (8 of 10) remain syntenic in the genomes with only a few (3 of the 10) having identifiable signatures of mobile elements. Notably, only one of these 10 is shared not only by the 17 cyanophages, but also by all 27 T4-like phages (thymidylate synthase); its evolutionary history suggests cyanophages may be the origin of these genes to Prochlorococcus. Next, we examined intragenic recombination among the core genes and found that it did occur, even among these core genes, but that the rate was significantly higher between closely related phages, perhaps reducing any detectable LGT signal and leading to taxon cohesion. Finally, among 18 auxiliary metabolic genes (AMGs, a.k.a. 'host' genes), we found that half originated from their immediate hosts, in some cases multiple times (e.g. psbA, psbD, pstS), while the remaining have less clear evolutionary origins ranging from cyanobacteria (4 genes) or microbes (5 genes), with particular diversity among viral TalC and Hsp20 sequences. Together, these findings highlight the patterns and limits of vertical evolution, as well as the ecological and evolutionary roles of LGT in shaping T4-like phage genomes.  相似文献   

19.
In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates efficiently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen (0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239 DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit of detection by flow cytometry, on greater than 99% of the macrophages. CCR5(+) cells were profoundly depleted only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expression. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung and brain compartments of infected people.  相似文献   

20.
Despite the increasing knowledge of Synechococcus spp. and their co-occurring cyanophages in oceanic and coastal water, little is known about their abundance, distribution, and interactions in the Chesapeake Bay estuarine ecosystem. A 5-year interannual survey shows that Synechococcus spp. and their phages are persistent and abundant members of Chesapeake Bay microbial communities. Synechococcus blooms (106 cells ml−1) were often observed in summer throughout the Bay, contributing 20 to 40% of total phytoplankton chlorophyll a. The distribution of phycoerythrin-containing (PE-rich) Synechococcus cells appeared to mostly correlate with the salinity gradient, with higher abundances at higher salinities. Cyanophages infectious to Synechococcus were also abundant (up to 6 × 105 viruses ml−1 by the most probable number assay) during summer months in the Bay. The covariation in abundance of Synechococcus spp. and cyanophages was evident, although the latitude of observed positive correlation varied in different years, mirroring the changing environmental conditions and therefore the host-virus interactions. The impacts of cyanophages on host Synechococcus populations also varied spatially and temporally. Higher phage-related Synechococcus mortality was observed in drought years. Virus-mediated host mortality and subsequent liberation of dissolved organic matter (DOM) may substantially influence oceanic biogeochemical processing through the microbial loop as well as the microbial carbon pump. These observations emphasize the influence of environmental gradients on natural Synechococcus spp. and their phage population dynamics in the estuarine ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号