首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以木质纤维素为原料、应用同步糖化共发酵工艺发酵生产酒精时需要酸性中低温高活力纤维素酶包括b-葡萄糖苷酶。本工作分6次构建了水牛瘤胃未培养微生物宏基因组文库, 获得1.26×105个克隆, 文库含外源DNA的总长度 约为4.8×106 kb。从文库中筛选到118个表达b-葡萄糖苷酶活性的独立克隆。发现其中8个克隆表达的b-葡萄糖苷酶在pH5.0、37oC条件下活性较强。对其中一个克隆进行了亚克隆, 序列分析发现一个2223 bp的潜在的编码b-葡萄糖苷酶基因(umcel3G)的开放阅读框(ORF), 其编码产物的氨基酸序列与来自于 Bacillus sp.的一个b-葡萄糖苷酶同源性最高, 具有60%的一致性和73%的相似性。该ORF在E.coli中的表达产物Umcel3G的分子量与预测大小相似, 酶谱分析表明该表达产物具有b-葡萄糖苷酶活性, 证实该基因为一个b-葡萄糖苷酶基因。测定了用Ni-NTA纯化的Umcel3G的酶学特性, 其最适pH和最适温度分别为6.0~6.5和45oC。一些金属离子如Ca2+、Zn2+能显著提高该酶的酶活, 而另外一些金属离子如Fe3+、Cu2+能抑制Umcel3G的活性。在pH4.5、35oC和5 mmol/L的 Ca2+存在的条件下, 用Ni-NTA纯化的重组酶的比活为22.8 IU/mg, 说明该酶在用SSCF工艺发酵生产酒精中有潜在的应用价值。  相似文献   

2.
A strain of a thermophilic bacterium, tentatively designated Bacillus thermodenitrificans TS-3, with arabinan-degrading activity was isolated. It produced an endo-arabinase (ABN) (EC 3.2.1.99) and two arabinofuranosidases (EC 3.2.1.55) extracellularly when grown at 60 degrees C on a medium containing sugar beet arabinan. The ABN (tentatively called an ABN-TS) was purified 7,417-fold by anion-exchange, hydrophobic, size exclusion, and hydroxyapatite chromatographies. The molecular mass of ABN-TS was 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the isoelectric point was pH 4.5. The enzyme was observed to be more thermostable than known ABNs; it had a half-life of 4 h at 75 degrees C. The enzyme had optimal activity at 70 degrees C and pH 6.0. The enzyme had apparent K(m) values of 8.5 and 45 mg/ml and apparent V(max) values of 1.6 and 1.1 mmol/min/mg of protein against debranched arabinan (alpha-1,5-arabinan) and arabinan, respectively. The enzyme had no pectin-releasing activity (protopectinase activity) from sugar beet protopectin, differing from an ABN (protopectinase-C) from mesophilic Bacillus subtilis IFO 3134. The pattern of degradation of debranched arabinan by ABN-TS indicated that the enzyme was an endo-acting enzyme and the main end products were arabinobiose and arabinose. The results of preliminary experiments indicated that the culture filtrate of strain TS-3 is suitable for L-arabinose production from sugar beet pulp at high temperature.  相似文献   

3.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

4.
Human lysosomal beta-glucosidase: purification by affinity chromatography   总被引:1,自引:0,他引:1  
Two Sepharose-bound substrate analogs, 6'-aminohexanoyl-(2-N-sphingosyl-O-beta-D-glucoside) and 6'-aminohexyl-dodecanedioyl-1-(2-N-sphingosyl-1-O-beta-D-glu coside), were synthesized and used sequentially for the affinity purification of lysosomal beta-glucosidase (N-acyl-sphingosyl-1-O-beta-D-glucoside:glucohydrolase, EC 3.2.1.45). The capacities of these nondegradable affinity supports were 0.1 and 0.15 mg enzyme/ml settled gel, respectively. The purified enzyme had a specific activity of 75 mumol min-1 mg-1. The preparation had a single protein band with a molecular weight of 67,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, evidencing its apparent homogeneity. Isoelectric focusing on granular gels revealed four molecular forms of the enzyme with pI values of 4.0, 4.5, 4.7, and 5.8 to 6.2. The purified enzyme hydrolyzed glucosyl ceramide and 4-methylumbelliferyl-beta-D-glucoside with Km and Vmax values of 0.6 and 2.5 mM, and 101 and 26.1 mumol min-1 mg-1, respectively. The enzyme also hydrolyzed octyl beta-glucoside, a linear mixed-type inhibitor of the enzyme. Binding constants (Ki) were determined for the inhibitors, sphingosyl-1-O-beta-D-glucoside (Ki = 20 microM) and its N-hexyl derivative (Ki = 0.3 microM). The enzyme had a half-life of 65 and 30 min at 50 degrees C and pH 5.0 or 6.0, respectively. In addition, two other classes of ligands were used for the purification of lysosomal beta-glucosidase, and their capacities and specificities were compared to those of the substrate analog affinity supports. These included (i) the alkyl amine inhibitors octylamine, decylamine, and tetradecylamine; and (ii) the inhibitors, 6-aminohexanoyl-beta-glucosylamine and aminododecanoyl-1-(2-N-sphingosyl-1-O-beta-D-glucoside). Compared to these other ligand columns, the substrate analog affinity supports had about 100- to 1000-fold greater capacities or afforded 8- to 40-fold greater purification of human lysosomal beta-glucosidase.  相似文献   

5.
A beta-glucosidase (EC 3.2.1.21) from the fungus Aspergillus terreus was purified to homogeneity as indicated by disc acrylamide gel electrophoresis. Optimal activity was observed at pH 4.8 and 50 degrees C. The beta-glucosidase had K(m) values of 0.78 and 0.40 mM for p-nitrophenyl-beta-d-glucopyranoside and cellobiose, respectively. Glucose was a competitive inhibitor, with a K(i) of 3.5 mM when p-nitrophenyl-beta-d-glucopyranoside was used as the substrate. The specific activity of the enzyme was found to be 210 IU and 215 U per mg of protein on p-nitrophenyl-beta-d-glucopyranoside and cellobiose substrates, respectively. Cations, proteases, and enzyme inhibitors had little or no effect on the enzyme activity. The beta-glucosidase was found to be a glycoprotein containing 65% carbohydrate by weight. It had a Stokes radius of 5.9 nm and an approximate molecular weight of 275,000. The affinity and specific activity that the isolated beta-glucosidase exhibited for cellobiose compared favorably with the values obtained for beta-glucosidases from other organisms being studied for use in industrial cellulose saccharification.  相似文献   

6.
An enzyme hydrolyzing nigeran (alternating alpha-1,3- and alpha-1,4-linked glucan) was purified from the culture filtrate of Streptomyces sp. J-13-3, which lysed the cell wall of Aspergillus niger, by percipitation with ammonium sulfate and column chromatographies on DEAE-Sephadex A-50, CM-Sephadex C-50, chromatofocusing, and Sephadex G-100. The final preparation was homogenous in polyacrylamide gel electrophoresis (PAGE). The molecular weight of the enzyme was 68,000 by SDS-PAGE and gel filtration. The optimum pH and temperature for the enzyme activity were 6.0 and 50 degrees C, respectively. The enzyme was stable in the pH range from 6.0 to 8.0 and up to 50 degrees C. The enzyme activity was inhibited significantly by Hg+, Hg2+, and p-chloromercuribenzoic acid. The Km (mg/ml) for nigeran was 3.33. The enzyme specifically hydrolyzed nigeran into nigerose and nigeran tetrasaccharide by an endo-type of action, indicating it to be a mycodextranase (EC 3.2.1.61) that splits only the alpha-1,4-glucosidic linkages in nigeran.  相似文献   

7.
An alpha-l-arabinofuranosidase (EC 3.2.1.55) was purified from the cytoplasm of Butyrivibrio fibrisolvens GS113. The native enzyme had an apparent molecular mass of 240 kDa and was composed of eight polypeptide subunits of 31 kDa. The enzyme displayed an isoelectric point of 6.0, a pH optimum of 6.0 to 6.5, a pH stability of 4.0 to 8.0, and a temperature optimum of 45 degrees C and was stable to 55 degrees C. The K(m) and V(max) for p-nitrophenyl-alpha-l-arabinofuranoside were 0.7 mM and 109 mumol/min/mg of protein, respectively. The enzyme was specific for the furanoside configuration and also readily cleaved methylumbelliferyl-alpha-l-arabinofuranoside but had no activity on a variety of other nitrophenyl- or methylumbelliferyl glycosides. When the enzyme was incubated with cellulose, carboxymethyl cellulose, or arabinogalactan, no release of sugars was found. Arabinose was found as the hydrolysis product of oatspelt xylan, corn endosperm xylan, or beet arabinan. No activity was detected when either coumaric or ferulic acid ester linked to arabinoxylobiose was used as substrates, but arabinoxylobiose was degraded to arabinose and xylobiose. Since B. fibrisolvens GS113 possesses essentially no extracellular arabinofuranosidase activity, the major role of the purified enzyme is apparently in the assimilation of arabinose-containing xylooligosaccharides generated from xylosidase, phenolic esterase, xylanase, and other enzymatic activities on xylans.  相似文献   

8.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

9.
The production of phytase and associated feed enzymes (phosphatase, xylanase, CMCase, alpha-amylase and beta-glucosidase) was determined in a thermotolerant fungus Mucor indicus MTCC 6333, isolated from composting soil. Solid-substrate culturing on wheat bran and optimizing other culture conditions (C and N sources, level of N, temperature, pH, culture age, inoculum level), increased the yield of phytase from 266 +/- 0.2 to 513 +/- 0.4 nkat/g substrate dry mass. The culture extract also contained 112, 194, 171, 396, and 333 nkat/g substrate of phosphatase, xylanase, CMCase, beta-glucosidase and alpha-amylase activities, respectively. Simple 2-step purification employing anion exchange and gel filtration chromatography resulted in 21.9-fold purified phytase. The optimum pH and temperature were pH 6.0 and 70 degrees C, respectively. The phytase was thermostable under acidic conditions, showing 82% residual activity after exposure to 60 degrees C at pH 3.0 and 5.0 for 2 h, and displayed broad substrate specificity. The Km was 200 nmol/L and v(lim) of 113 nmol/s per mg protein with dodecasodium phytate as substrate. In vitro feed trial with feed enzyme resulted in the release of 1.68 g inorganic P/kg of feed after 6 h of incubation at 37 degrees C.  相似文献   

10.
An extracellular xylanase produced by a cellulase-negative mutant strain of Streptomyces lividans 1326 was purified to homogeneity. The purified enzyme has an apparent Mr of 43,000 and pI of 5.2. The pH and temperature optima for the activity were 6.0 and 60 degrees C respectively, and the Km and Vmax. values, determined with a soluble oat spelts xylan, were 0.78 mg/ml and 0.85 mmol/min per mg of enzyme. The xylanase showed no activity towards CM-cellulose and p-nitrophenyl beta-D-xyloside. The enzyme degraded xylan, producing mainly xylobiose, a mixture of xylo-oligosaccharides and a small amount of xylose as end products. Its pattern of action on beta-1,4-D-xylan indicates that it is a beta-1,4-endoxylanase (EC 3.2.1.8).  相似文献   

11.
A Bacillus spp. strain SPS-0, isolated from a hot spring in Portugal, produced an extracellular xylanase upon growth on wheat bran arabinoxylan. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange, gel filtration, and affinity chromatography. The optimum temperature and pH for activity was 75 degrees C and 6.0. Xylanase was stable up to 70 degrees C for 4 h at pH 6.0 in the presence of xylane. Xylanase was completely inhibited by the Hg(2+) ions. beta-Mercaptoethanol, dithiothreitol, and Mn(2+) stimulated the xylanase activity. The products of birchwood xylan hydrolysis were xylose, xylobiose, xylotriose, and xylotetraose. Kinetic experiments at 60 degrees C and pH 6.0 gave V(max) and K(m)values of 2420 nkat/mg and 0.7 mg/ml.  相似文献   

12.
Neuraminidase (EC 3.2.1.18) has been purified from the culture medium of Clostridium perfringens ATCC 10543, through steps of gel filtration on Sephadex G-75 column, DEAE-cellulose DE 23 anion exchange chromatography, and isochromatofocusing. A homogeneous enzyme was obtained with a 7552-fold increase in specific activity to 295 units/mg protein. The yield was about 25%. The enzyme consists of a single polypeptide with a molecular weight of 69,000 as determined by SDS-polyacrylamide gel electrophoresis. Kinetic studies showed that Km is 1.5 mM for sialyllactose and Vmax is 0.41 mumole/min/ml at the enzyme concentration of 0.14 microgram/ml. The enzyme is stable at pH 5.2-8.0 with an optimal pH of 6.0. A concentrated solution of the purified enzyme was stable over one year at 4 degrees C. The purified enzyme hydrolyzed human alpha 1-acid glycoprotein completely; thus, it can be used in the clinical assay of N-acetylneuraminic acid in the serum.  相似文献   

13.
Extracellular xylanase (EC 3.2.1.8) from Streptomyces sp. K37 was purified 33.53 by ultrafiltration and cation exchange chromatography followed by gel filtration chromatography. The optimum pH and temperature for purified xylanase were found to be pH 6.0 and 60 degrees C. The Km and V(max) values of the purified xylanase were 15.4 mg ml(-1) and 0.67 micromole reducing sugar min(-1) ml(-1). High performance liquid chromatography (HPLC) gel filtration of the purified xylanase eluted xylanase activity as a peak corresponding to the molecular weight of about 24.3 kDa while the molecular weight determined by SDS-PAGE was found to be 26.4 kDa. The purified xylanase of Streptomyces sp. K37 was found to be endoxylanase and non arabinose liberating enzyme and was highly glycosylated (73.97%).  相似文献   

14.
A mutant of Alternaria alternata excreted enhanced levels of carboxymethylcellulase and particularly beta-glucosidase when grown in cellulose liquid media. Both enzymes were purified two- to four-fold by ammonium sulfate precipitation and gel filtration, and the kinetic data showed K(m) values of 16.64 mg/ml of culture fluid for carboxymethylcellulase and 0.14 mM p-nitrophenyl-beta-d-glucoside and 0.81 mM cellobiose for beta-glucosidase at pH 5. Carboxymethylcellulase and extracellular beta-glucosidase functioned optimally at pH 5 to 6 and 4.5 to 5 and at temperatures of 55 to 60 and 70 to 75 degrees C, respectively. Both temperature optima and thermostability of beta-glucosidase were among the highest ever reported for the same enzyme excreted from cellulase and beta-glucosidase hyperproducing microorganisms.  相似文献   

15.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

16.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

17.
Three exo-glucanases, two endo-glucanases and two beta-glucosidases were separated and purified from the culture medium of Aspergillus nidulans. The optimal assay conditions for all forms of cellulase components ranged from pH 5.0 to 6.0 and 50 degrees C and 65 degrees C for exo-glucanases and endo-glucanases but 35 degrees C and 65 degrees C for beta-glucosidases. A close relation of enzyme stability to their optimal pH range was observed. All the cellulase components were stable for 10 min at 40-50 degrees C. Exo-II and Exo-III (Km, 38.46 and 37.71 mg/ml) had greater affinity for the substrate than Exo-I (Km, 50.00 mg/ml). The Km values of Endo-I and Endo-II (5.0 and 4.0 mg/ml) and their maximum reaction velocities (Vmax, 12.0 and 10.0 IU/mg protein) were comparable. beta-Glucosidases exhibited Km values of 0.24 and 0.12 mmol and Vmax values of 8.00 and 0.67 IU/mg protein. The molecular weights recorded for various enzyme forms were: Exo-I, 29,000; Exo-II, 72,500; Exo-III, 138,000; Endo-I, 25,000; Endo-II, 32,500; beta-Gluco-I, 14,000 and beta-Gluco-II, 26,000. Exo- and endo-glucanases were found to require some metal ions as co-factors for their catalytic activities whereas beta-glucosidases did not. Hg2+ inhibited the activity of all the cellulase components. The saccharification studies demonstrated a high degree of synergism among all the three cellulase components for hydrolysis of dewaxed cotton.  相似文献   

18.
A thermostable extracellular glucoamylase from the thermophilic fungus Humicola grisea was purified to homogeneity. Its molecular mass and isoelectric point were 74 kDa and 8.4, respectively. The enzyme contained 5% carbohydrate, showed maximal activities at pH 6.0 and 60(deg)C, and was stable at 55(deg)C and pH 6.0 for 2 h. The K(infm) of soluble starch hydrolysis at 50(deg)C and pH 6.0 was 0.14 mg/ml. The purified enzyme was remarkably insensitive to glucose.  相似文献   

19.
A beta-glucosidase with cellobiase activity was purified to homogeneity from the culture filtrate of the mushroom Termtomyces clypeatus. The enzyme had optimum activity at pH 5.0 and temperature 65 degrees C and was stable up to 60 degrees C and within pH 2-10. Among the substrates tested, p-nitrophenyl-beta-D-glucopyranoside and cellobiose were hydrolysed best by the enzyme. Km and Vm values for these substrates were 0.5, 1.25 mM and 95, 91 mumol/min per mg, respectively. The enzyme had low activity towards gentiobiose, salicin and beta-methyl-D-glucoside. Glucose and cellobiose inhibited the beta-D-glucosidase (PNPGase) activity competitively with Ki of 1.7 and 1.9 mM, respectively. Molecular mass of the native enzyme was approximated to be 450 kDa by HPLC, whereas sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a molecular mass of 110 kDa. The high molecular weight enzyme protein was present both intracellularly and extracellularly from the very early growth phase. The enzyme had a pI of 4.5 and appeared to be a glycoprotein.  相似文献   

20.
An extracellular cycloamylose (cyclodextrin) glucanotransferase (EC 2.4.1.19) from Bacillus macerans was purified to homogeneity by adsorption on starch, ammonium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of 67,000 and consisted of one polypeptide chain. The isoelectric point was pH 5.4. Temperature and pH optima were 60° and 5.45.8, respectively. The purified enzyme was quite stable at 50° (pH 6.0), but lost ≈80% of its activity at 60° for 30 min (pH 6.0). Prolonged digestion by trypsin did not affect the catalytic properties of the enzyme. The Km for starch was 5.7 mg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号