首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of allosteric control in the biosynthetic pathway for aromatic amino acids provides a basis to explain vulnerability to growth inhibition by l-phenylalanine (0.2 mM or greater) in the unicellular cyanobacterium Synechocystis sp. 29108. We attribute growth inhibition to the hypersensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase to feedback inhibition by l-phenylalanine. Hyperregulation of this initial enzyme of aromatic biosynthesis depletes the supply of precursors needed for biosynthesis of l-tyrosine and l-tryptophan. Consistent with this mechanism is the total reversal of phenylalanine inhibition by a combination of tyrosine and tryptophan. Inhibited cultures also contained decreased levels of phycocyanin pigments, a characteristic previously correlated with amino acid starvation in cyanobacteria. l-Phenylalanine is a potent noncompetitive inhibitor (with both substrates) of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase, whereas l-tyrosine is a very weak inhibitor. Prephenate dehydratase also displays allosteric sensitivity to phenylalanine (inhibition) and to tyrosine (activation). Both 2-fluoro and 4-fluoro derivatives of phenylalanine were potent analog antimetabolites, and these were used in addition to l-phenylalanine as selective agents for resistant mutants. Mutants were isolated which excreted both phenylalanine and tyrosine, the consequence of an altered 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase no longer sensitive to feedback inhibition. Simultaneous insensitivity to l-tyrosine suggests that l-tyrosine acts as a weak analog mimic of l-phenylalanine at a common binding site. Prephenate dehydratase in the regulatory mutants was unaltered. Surprisingly, in view of the lack of regulation in the tyrosine branchlet of the pathway, such mutants excrete more phenylalanine than tyrosine, indicating that l-tyrosine activation dominates l-phenylalanine inhibition of prephenate dehydratase in vivo. In mutant Phe r19 the loss in allosteric sensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase was accompanied by a threefold increase in specific activity. This could suggest that existence of a modest degree of repression control (autogenous) over 3-deoxy-d-arabinoheptulosonate synthase, although other explanations are possible. Specific activities of chorismate mutase, prephenate dehydratase, shikimate/nicotinamide adenine dinucleotide phosphate dehydrogenase, and arogenate/nicotinamide adenine dinucleotide phosphate dehydrogenase in mutant Phe r19 were identical with those of the wild type.  相似文献   

2.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

3.
Acholeplasma laidlawii possesses a biochemical pathway for tyrosine and phenylalanine biosynthesis, while Mycoplasma iowae and Mycoplasma gallinarum do not. The detection of 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonate (DAHP) synthase (EC 4.1.2.15), dehydro-shikimate reductase (EC 1.1.1.25) and 3-enol-pyruvoylshikimate-5-phosphate synthase (EC 2.5.1.19) activities in cell-free extracts established the presence in A. laidlawii of a functional shikimate pathway. L-Phenylalanine synthesis occurs solely through the phenylpyruvate route via prephenate dehydratase (EC 4.2.1.51), no arogenate dehydratase activity being found. Although arogenate dehydrogenase was detected, L-tyrosine synthesis appears to occur mainly through the 4-hydroxyphenylpyruvate route, via prephenate dehydrogenase (EC 1.3.1.12), which utilized NAD+ as a preferred coenzyme substrate. L-Tyrosine was found to be the key regulatory molecule governing aromatic biosynthesis. DAHP synthase was feedback inhibited by L-tyrosine, but not by L-phenylalanine or L-tryptophan; L-tyrosine was a potent feedback inhibitor of prephenate dehydrogenase and an allosteric activator of prephenate dehydratase. Chorismate mutase (EC 5.4.99.5) was sensitive to product inhibition by prephenate. Prephenate dehydratase was feedback inhibited by L-phenylalanine. It was also activated by hydrophobic amino acids (L-valine, L-isoleucine and L-methionine), similar to results previously found in a number of other genera that share the Gram-positive line of phylogenetic descent. Aromatic-pathway-encoded cistrons present in saprophytic large-genome mycoplasmas may have been eliminated in the parasitic small-genome mycoplasmas.  相似文献   

4.
D-Tyrosine as a metabolic inhibitor of Bacillus subtilis   总被引:3,自引:1,他引:2       下载免费PDF全文
The d-isomer of tyrosine is a potent inhibitor of growth in transformable strain 168 of Bacillus subtilis. A d-tyrosine-resistant mutant of the inhibited strain was isolated which excreted l-tyrosine, had a diminished growth rate, and required l-phenylalanine to attain the growth rate of the wild-type parent. Mapping by deoxyribonucleate transformation located this resistance in the gene coding for prephenate dehydrogenase. This enzyme in the d-tyrosine-resistant mutant was insensitive to the usual feedback inhibition exerted by l-tyrosine in extracts of strain 168. In contrast, the growth of poorly transformable strain 23 of B. subtilis, as well as that of several other Bacillus species, was not affected by the analogue. Transformation mapping demonstrated no linkage of this latter "natural resistance" to several different aromatic markers. Prephenate dehydrogenase in extracts from strain 23 was as sensitive as that from strain 168 to feedback inhibition by l-tyrosine in vitro. The relationships of the latter results to the regulation of tyrosine biosynthesis and the possible nature of strain differences in d-tyrosine sensitivity are discussed.  相似文献   

5.
A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (first pathway enzyme) is feedback inhibited by L-tyrosine, whereas prephenate dehydratase (enzyme step 9) is feedback inhibited by L-phenylalanine and allosterically activated by L-tyrosine. Mutants lacking feedback inhibition of prephenate dehydratase excreted relatively modest quantities of L-phenylalanine. In contrast, mutants deregulated in allosteric control of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase excreted large quantities of L-phenylalanine (in addition to even greater quantities of L-tyrosine). Clearly, in the latter mutants, the elevated levels of prephenate must overwhelm the inhibition of prephenate dehydratase by L-phenylalanine, an effect assisted by increased intracellular L-tyrosine, an allosteric activator. The results show that early-pathway flow regulated in vivo by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the dominating influence upon metabolite flow-through to L-phenylalanine. L-Tyrosine biosynthesis exemplifies such early-pathway control even more simply, since 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the sole regulatory enzyme subject to end-product control by L-tyrosine.  相似文献   

6.
l-Tyrosine is an important amino acid widely used in food, agriculture, and pharmaceutical industries. However, the industrial application was severely constrained due to low production. To obtain the Escherichia coli mutant producing l-tyrosine in abundance, the heat-inducible expression vector carrying the two feedback resistance enzymes (3-deoxy-7-phosphoheptulonate synthase encoded by aroGfbr and chorismate mutase/prephenate dehydrogenase encoded by tyrAfbr) were introduced into the phenylalanine-producing E. coli strain to enable it to synthesize l-tyrosine directly from glucose. Furthermore, the CRISPR-Cas9 technology was applied to eliminate l-phenylalanine and l-tryptophan pathways for their competition for the carbon flux. The global regulatory protein TyrR, which mediates the biosynthesis and transportation of aromatic amino acids, was also deleted to increase l-tyrosine production. Among the recombinant strains, the pheA/tyrR double-gene deletion strain had the highest yield of 5.84 g/L on shake flasks. The feeding strategies were then optimized in a 3-L fermentor. The pheA/tyrR double-gene deletion strain with the heat-inducible expression plasmid pAP-aroGfbr-tyrAfbr was able to produce 55.54 g/L l-tyrosine by fed-batch fermentation; the substrate conversion rate was 0.25 g/g. The recombinant strains constructed in this study could be an industrial platform for the microbial production of l-tyrosine directly from glucose.  相似文献   

7.
We examined the enzymology and regulatory patterns of the aromatic amino acid pathway in 48 strains of cyanobacteria including representatives from each of the five major grouping. Extensive diversity was found in allosteric inhibition patterns of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, not only between the major groupings but also within several of the generic groupings. Unimetabolite inhibition by phenylalanine occurred in approximately half of the strains examined; in the other strains unimetabolite inhibition by tyrosine and cumulative, concerted, and additive patterns were found. The additive patterns suggest the presence of regulatory isozymes. Even though both arogenate and prephenate dehydrogenase activities were found in some strains, it seems clear that the arogenate pathway to tyrosine is a common trait that has been highly conserved among cyanobacteria. No arogenate dehydratase activities were found. In general, prephenate dehydratase activities were activated by tyrosine and inhibited by phenylalanine. Chorismate mutase, arogenate dehydrogenase, and shikimate dehydrogenase were nearly always unregulated. Most strains preferred NADP as the cofactor for the dehydrogenase activities. The diversity in the allosteric inhibition patterns for 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, cofactor specificities, and the presence or absence of prephenate dehydrogenase activity allowed the separation of subgroupings within several of the form genera, namely, Synechococcus, Synechocystis, Anabaena, Nostoc, and Calothrix.  相似文献   

8.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

9.
Pseudomonas aeruginosa is representative of a large group of pseudomonad bacteria that possess coexisting alternative pathways to L-phenylalanine (as well as to L-tyrosine). These multiple flow routes to aromatic end products apparently account for the inordinate resistance of P. aeruginosa to end product analogs. Manipulation of carbon source nutrition produced a physiological state of sensitivity to p-fluorophenylalanine and m-fluorophenylalanine, each a specific antimetabolite of L-phenylalanine. Analog-resistant mutants obtained fell into two classes. One type lacked feedback sensitivity of prephenate dehydratase and was the most dramatic excretor of L-phenylalanine. The presence of L-tyrosine curbed phenylalanine excretion to one-third, a finding explained by potent early-pathway regulation of 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase-Tyr (a DAHP synthase subject to allosteric inhibition by L-tyrosine). The second class of regulatory mutants possessed a completely feedback-resistant DAHP synthase-Tyr, the major species (greater than 90%) of two isozymes. Deregulation of DAHP synthase-Tyr resulted in the escape of most chorismate molecules produced into an unregulated overflow route consisting of chorismate mutase (monofunctional), prephenate aminotransferase, and arogenate dehydratase. In the wild type the operation of the overflow pathway is restrained by factors that restrict early-pathway flux. These factors include the highly potent feedback control of DAHP synthase isozymes by end products as well as the strikingly variable abilities of different carbon source nutrients to supply the aromatic pathway with beginning substrates. Even in the wild type, where all allosteric regulation in intact, some phenylalanine overflow was found on glucose-based medium, but not on fructose-based medium. This carbon source-dependent difference was much more exaggerated in each class of regulatory mutants.  相似文献   

10.
Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.  相似文献   

11.
l-Tyrosine and l-phenylalanine enter cells of Bacillus subtilis via a system of active transport that exhibits complex kinetic behavior. The specificity of the transport system was characterized both at low concentrations of transport substrate (where affinity for l-tyrosine or l-phenylalanine is high but capacity is low) and at high concentrations (where affinity is low but capacity is high). Specificity was not found to differ significantly as a function of either l-tyrosine or l-phenylalanine concentration. Kinetic analysis showed that the relationship between the uptake of l-phenylalanine and l-tyrosine is strictly competitive. Neither l-tyrosine nor l-phenylalanine uptake was competitively inhibited by other naturally occurring l-amino acids, indicating the importance of the phenyl side chain to uptake specificity. Hence, it is concluded that l-tyrosine and l-phenylalanine are transported by a common system that is specific for these two amino acids. The abilities of analogue derivatives of l-tyrosine and l-phenylalanine to inhibit the uptake of l-[(14)C]tyrosine and l-[(14)C]phenylalanine competitively were determined throughout a wide range of substrate and inhibitor concentrations. In this manner, the contributions of the side chain, the alpha-amino group and the carboxyl group to uptake specificity were established. It is concluded that the positively charged alpha-amino group contributes more significantly to uptake specificity than does the negatively charged carboxyl group. The recognition of a phenyl ring is an essential feature of specificity; other amino acids with aromatic side chains, such as the indole and imidazole rings of l-tryptophan and l-histidine, do not compete with l-tyrosine and l-phenylalanine for uptake. The presence of the p-hydroxy substitutent in the side chain (as in l-tyrosine) enhances the uptake of the aryl amino acid analogues investigated.  相似文献   

12.
The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extremehalophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by l-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, l-tryptophan inhibited activity while l-tyrosine, l-methionine, l-leucine, and l-isoleucine activated the enzyme. l-Isoleucine and l-phenylalanine were effective at M levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by -2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by l-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by l-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.  相似文献   

13.
Although l-(8S)-arogenate has been recognized as a potential precursor of l-phenylalanine or l-tyrosine biosynthesis for only a few years, it is widely distributed in nature. The biochemical formation of arogenate has involved its isolation from the culture supernatant of a mutant strain of Neurospora crassa, a lengthy procedure of 20-day duration. We now report an improved approach using immobilized crude enzyme extracts from a cyanobacterium. The starting materials, chorismic acid or prephenic acid, are readily available, and overall yields ranging from 40 to 60% are obtained. The whole procedure takes only 1 day. Crude, unfractionated enzyme extracts from Synechocystis sp. ATCC 29108 are immobilized on a phenoxyacetyl cellulose solid support. The hydrophobic binding of the extract proteins did not denature chorismate mutase or prephenate aminotransferase, the enzymes catalyzing the conversion of chorismate to prephenate and prephenate to arogenate, respectively. This microbial system was ideally suited for preparation of arogenate, since other enzyme activities which might compete for prephenate or chorismate as substrates, or which might further metabolize arogenate, were absent or inactive under the conditions used. In addition to the substrates prephenate or chorismate, pyridoxal-5′-phosphate (the coenzyme required for transamination), as well as leucine (amino donor for transamination of prephenate), was added. The reaction product, arogenate, was separated from the starting materials by preparative thin-layer chromatography.  相似文献   

14.
l-Histidine and, to a lesser degree, l-phenylalanine at concentrations of 10(-4)m inhibit the growth of leaky mutants (bradytrophs) of Bacillus subtilis that are deficient in the synthesis of p-hydroxyphenylpyruvate, the first intermediate specific to tyrosine synthesis. The inhibition can be overcome by growth factor amounts of l-tyrosine and p-hydroxyphenylpyruvate. Histidine and phenylalanine are capable of inhibiting the synthesis of tyrosine in several ways, and the major physiological effect which results in growth inhibition has not been established. Both l-histidine and l-phenylalanine inhibit the activity of prephenate dehydrogenase at concentrations about 100-fold higher than the inhibitory concentration of l-tyrosine. Histidine also appears to repress the synthesis of prephenate dehydrogenase because a histidine bradytroph growing in histidine-supplemented medium has a twofold lower level of this enzyme than the same cells growing in unsupplemented medium. These same two amino acids also inhibit the growth of a bradytroph deficient in dehydroquinate synthetase, an early enzyme in the pathway of tyrosine, phenylalanine, and tryptophan synthesis. The inhibition is overcome by a combination of tyrosine and phenylalanine. Histidine-resistant derivatives of both the prephenate dehydrogenase and dehydroquinate synthetase-deficient strains, which simultaneously have gained resistance to phenylalanine, have been isolated. Most of these resistant mutants synthesize additional tyrosine compared with the parent strain. One class of resistant mutants excretes tyrosine and has a number of enzymes of aromatic acid synthesis which are no longer repressible by any combination of the aromatic amino acids. Tyrosine inhibits the growth of histidine bradytrophs. Histidine, at growth factor levels, overcomes the inhibition.  相似文献   

15.
The pathway construction and allosteric regulation of phenylalanine and tyrosine biosynthesis was examined in Neisseria gonorrhoeae. A single 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase enzyme sensitive to feedback inhibition by l-phenylalanine was found. Chorismate mutase and prephenate dehydratase appear to co-exist as catalytic components of a bifunctional enzyme, known to be present in related genera. The latter enzyme activities were both feedback inhibited by l-phenylalanine. Prephenate dehydratase was strongly activated by l-tyrosine. NAD+-linked prephenate dehydrogenase and arogenate dehydrogenase activities coeluted following ion-exchange chromatography, suggesting their identity as catalytic properties of a single broad-specificity cyclohexadienyl dehydrogenase. Each dehydrogenase activity was inhibited by 4-hydroxyphenylpyruvate, but not by l-tyrosine. Two aromatic aminotransferases were resolved, one preferring the l-phenylalanine:2-ketoglutarate substrate combination and the other preferring the l-tyrosine: 2-ketoglutarate substrate combination. Each aminotransferase was also able to transaminate prephenate. The overall picture of regulation is one in which l-tyrosine modulates l-phenylalanine synthesis via activation of prephenate dehydratase. l-Phenylalanine in turn regulates early-pathway flow through inhibition of DAHP synthase. The recent phylogenetic positioning of N. gonorrhoeae makes it a key reference organism for emerging interpretations about aromatic-pathway evolution.  相似文献   

16.
The bifunctional enzyme chorismate mutase/prephenate dehydratase (EC 5.4.99.5/4.2.1.51), which is encoded by the pheA gene of Escherichia coli K-12, is subject to strong feedback inhibition by L-phenylalanine. Inhibition of the prephenate dehydratase activity is almost complete at concentrations of L-phenylalanine greater than 1 mM. The pheA gene was cloned, and the promoter region was modified to enable constitutive expression of the gene on plasmid pJN302. As a preliminary to sequence analysis, a small DNA insertion at codon 338 of the pheA gene unexpectedly resulted in a partial loss of prephenate dehydratase feedback inhibition. Four other mutations in the pheA gene were identified following nitrous acid treatment of pJN302 and selection of E. coli transformants that were resistant to the toxic phenylalanine analog beta-2-thienylalanine. Each of the four mutations was located within codons 304 to 310 of the pheA gene and generated either a substitution or an in-frame deletion. The mutations led to activation of both enzymatic activities at low phenylalanine concentrations, and three of the resulting enzyme variants displayed almost complete resistance to feedback inhibition of prephenate dehydratase by phenylalanine concentrations up to 200 mM. In all four cases the mutations mapped in a region of the enzyme that has not been implicated previously in feedback inhibition sensitivity of the enzyme.  相似文献   

17.
The bifunctional enzyme chorismate mutase/prephenate dehydratase (EC 5.4.99.5/4.2.1.51), which is encoded by the pheA gene of Escherichia coli K-12, is subject to strong feedback inhibition by L-phenylalanine. Inhibition of the prephenate dehydratase activity is almost complete at concentrations of L-phenylalanine greater than 1 mM. The pheA gene was cloned, and the promoter region was modified to enable constitutive expression of the gene on plasmid pJN302. As a preliminary to sequence analysis, a small DNA insertion at codon 338 of the pheA gene unexpectedly resulted in a partial loss of prephenate dehydratase feedback inhibition. Four other mutations in the pheA gene were identified following nitrous acid treatment of pJN302 and selection of E. coli transformants that were resistant to the toxic phenylalanine analog beta-2-thienylalanine. Each of the four mutations was located within codons 304 to 310 of the pheA gene and generated either a substitution or an in-frame deletion. The mutations led to activation of both enzymatic activities at low phenylalanine concentrations, and three of the resulting enzyme variants displayed almost complete resistance to feedback inhibition of prephenate dehydratase by phenylalanine concentrations up to 200 mM. In all four cases the mutations mapped in a region of the enzyme that has not been implicated previously in feedback inhibition sensitivity of the enzyme.  相似文献   

18.
The market of l-phenylalanine has been stimulated by the great demand for the low-calorie sweetener aspartame. In this paper, the effects of pivotal genes on l-phenylalanine production were evaluated by metabolic engineering of wild type Escherichia coli. The bifunctional PheA protein contains two catalytic domains (chorismate mutase and prephenate dehydratase activities) as well as one R-domain (for feedback inhibition by l-phenylalanine). The catalytic domain of PheA was overexpressed to increase l-phenylalanine production. It was firstly indicated that this domain could enhance the metabolic influx to overproduce l-phenylalanine and improve the survival ability under m-Fluoro-dl-phenylalanine stress. Furthermore, the fermentation performance of aroG feedback inhibition resistant mutants was firstly compared, aroG29 and aroG15 increased the l-phenylalanine concentration by 5-fold. After that the expression of aroK and ydiB was also elevated, and the l-phenylalanine yield on cell (0.79 g/g) and maximum l-phenylalanine productivity (0.073 g/L/h) were subsequently doubled. Meanwhile, the l-phenylalanine yield on glucose increased from 0.124 g/g to 0.153 g/g. It was found that genes ydiB and aroK could elevate the l-phenylalanine yield and productivity and shorten the lag phase.  相似文献   

19.
Summary The prephenate dehydratase gene was cloned from a mutant of Brevibacterium lactofermentum, AJ11957 that produced enzyme free from feedback inhibition. The recombinant plasmids pPH11 and pPH14 complemented a phenylalanine auxotroph of B. lactofermentum, A-15, provided the transformant with the desensitized enzyme and caused an increased level of the enzyme compared to that of a wild strain. Plasmid pPH14 was introduced into l-phenylalanine producers genetically induced from B. lactofermentum; MF358 and FP-1 excreting l-tyrosine and anthranilate, respectively, as by-products. Both transformants predominantly accumulated l-phenylalanine at the expense of by-product formation. Co-existence of pPH14 and pTAR16, a recombinant plasmid expressing desensitized 3-deoxy-d-arabino-hepturosonate-7-phosphate synthase had a marked effect on further improvement in l-phenylalanine productivity, accompanied by an increase in the corresponding enzyme activity. The parent, MF358, accumulating 5.5 g/l l-phenylalanine, 6.8 g/l l-tyrosine and 0.3 g/l anthranilate turned into a potent l-phenylalanine producer producing 18.2 g/l l-phenylalanine and 1.0 g/l l-tyrosine by-product. Offprint requests to: Hisao Ito  相似文献   

20.
Kinetic analyses of the irreversible inhibition of l-tyrosine and l-phenylalanine transport in Bacillus subtilis by phenylalanine chloromethyl ketone revealed that the inhibition was due to an affinity labeling process. Phenylalanine chloromethyl ketone is a competetive inhibitor of l-tyrosine and l-phenylalanine transport. The Ki values for irreversible inhibition of l-tyrosine and l-phenylalanine transport were 194 and 177 μm, respectively, and the first order rate constants for the alkylation reaction leading to inactivation of transport of l-tyrosine and l-phenylalanine were 0.016 and 0.012 min?1, respectively. The similarity of these constants are consistent with the involvement of the same functional site for l-phenylalanine and l-tyrosine transport. A second effect of phenylalanine chloromethyl ketone was inhibition of the uptake of neutral, aliphatic amino acids; transport of basic and acidic amino acids was unaffected by it. Since high concentrations of any amino acid did not reduce the inhibitory effects of phenylalanine chloromethyl ketone on transport of neutral, aliphatic amino acids, an independent effect, not due to an affinity labeling process was inferred. A procedure for selective labeling of the l-tyrosine/l-phenylalanine transport system was demonstrated that should be applicable to the introduction of a radioactive label into the transport protein(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号