首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was initiated to characterize Rhizobium isolates obtained from root nodules of ineffectively nodulated, field-grown alfalfa (Medicago sativa L.) plants. The purpose was to determine if these isolates possessed characteristics which would explain either their ineffectiveness in N2 fixation or their apparent ability to tolerate the moderately acid soil conditions from which they originated. Isolates were characterized by analysis of growth rate, 39°C tolerance, acid production on conventional media, and symbiotic performance. All isolates were ineffective in N2 fixation on alfalfa, and they contained one or more anomalous characteristics. These included either slow growth rate, lack of 39°C tolerance, or lack of acid production on conventional media. Infectiveness tests on a broad range of legumes revealed that the isolates formed root nodules on M. sativa, Medicago lupulina L., and Phaseolus vulgaris (L.) Savi. (common bean). These results provide evidence that, in some situations, ineffective nodulation of M. sativa in the field may be due to the presence of promiscuous, native Rhizobium species.  相似文献   

2.
Medicago ciliaris (L.) All., a salt-tolerant legume, was not nodulated by Rhizobium meliloti (2011), a strain commonly used for field inoculation of alfalfas. A strain of Rhizobium meliloti (ABS7) was isolated from saline Algerian soils. It is generally more salt-resistant than strain 2011, exhibits a higher rate of growth and induces the formation of nodules on M. ciliaris . C2H2 reduction activity of M. ciliaris nodules was inhibited by 50% in the presence of 200 m M NaCl in the culture medium. whereas 100 m M NaCl was sufficient to inhibit the activity of nodules of M. sativa (L. cv. Europe). C2H2 reduction by bacteroids, isolated from nodules of the two species of alfalfa, was directly inhibited by the presence of NaCl in the incubation medium. In both cases, glucose could support bacteroid nitrogen fixation, but only in a narrow range of O2 tensions. Bacteriods from M. ciliaris were more tolerant to salt than M. sativa ones. The salt resistance of bacteroids from nodules of plants watered with NaCl solutions was not improved in either species. Salt directly added to the incubation mixture of bacteroids or to the culture medium of plants inhibited O2 uptake of bacteroids isolated from nodules of both M. ciliaris and M. sativa . The depressive effect of NaCl on bacteroid C2H2 reduction could be directly related to the drop in bacteroid respiration. The nitrogen fixation capacity of the M. ciliaris-Rhizobium meliloti (ABS7) symbiosis under saline conditions leads us to recommend the introduction of this association in salt-troubled areas.  相似文献   

3.
Phenotypic and DNA sequence comparisons are presented for eight Rhizobium isolates that were cultured from field-grown alfalfa (Medicago sativa L.) in Oregon. These isolates were previously shown to nodulate both alfalfa and common bean (Phaseolus vulgaris (L.) Savi.). The objective of the present study was to determine their phylogenetic relationships to the normal symbionts of these plants, Rhizobium meliloti and Rhizobium leguminosarum biovar phaseoli, respectively. Phenotypically, the Oregon isolates more nearly resemble strains from P. vulgaris than those from M. sativa. For example, even though nitrogen fixation levels were low with both host species, the symbiotic efficiency of a representative Rhizobium isolate (Or 191) with common bean was twice that observed with alfalfa. Comparative sequencing of a 260-bp segment of the 16S rRNA gene (directly sequenced after amplification by the polymerase chain reaction) demonstrated that Or 191 is not closely related to the type strain of R. meliloti (ATCC 9930), R. leguminosarum (ATCC 10004), or Rhizobium tropici (CIAT 899). Instead, sequence comparisons of the 16S gene indicated that Or 191 belongs to a distinct and previously unrecognized taxonomic group that includes strains that have previously been called R. leguminosarum bv. phaseoli type I. Unlike type I strains, however, Or 191 has only a single copy of the nifH gene (type I strains have three), and the nucleotide sequence of this gene is substantially different from those of other rhizobial and nonrhizobial nifH genes examined thus far.  相似文献   

4.
Phenotypic and DNA sequence comparisons are presented for eight Rhizobium isolates that were cultured from field-grown alfalfa (Medicago sativa L.) in Oregon. These isolates were previously shown to nodulate both alfalfa and common bean (Phaseolus vulgaris (L.) Savi.). The objective of the present study was to determine their phylogenetic relationships to the normal symbionts of these plants, Rhizobium meliloti and Rhizobium leguminosarum biovar phaseoli, respectively. Phenotypically, the Oregon isolates more nearly resemble strains from P. vulgaris than those from M. sativa. For example, even though nitrogen fixation levels were low with both host species, the symbiotic efficiency of a representative Rhizobium isolate (Or 191) with common bean was twice that observed with alfalfa. Comparative sequencing of a 260-bp segment of the 16S rRNA gene (directly sequenced after amplification by the polymerase chain reaction) demonstrated that Or 191 is not closely related to the type strain of R. meliloti (ATCC 9930), R. leguminosarum (ATCC 10004), or Rhizobium tropici (CIAT 899). Instead, sequence comparisons of the 16S gene indicated that Or 191 belongs to a distinct and previously unrecognized taxonomic group that includes strains that have previously been called R. leguminosarum bv. phaseoli type I. Unlike type I strains, however, Or 191 has only a single copy of the nifH gene (type I strains have three), and the nucleotide sequence of this gene is substantially different from those of other rhizobial and nonrhizobial nifH genes examined thus far.  相似文献   

5.
H2 evolved by alfalfa root nodules during the process of N2 fixation may be an important factor influencing the distribution of soil bacteria. To test this hypothesis under field conditions, over 700 bacterial isolates were obtained from fallow soil or from the 3-mm layer of soil surrounding alfalfa (Medicago sativa L.) root nodules, alfalfa roots, or bindweed (Convolvulus arvensis L.) roots. Bacteria were isolated under either aerobic or microaerophilic conditions and were tested for their capacity to metabolize H2. Isolates showing net H2 uptake and 3H2 incorporation activity under laboratory conditions were assigned a Hup+ phenotype, whereas organisms with significant H2 output capacity were designated as a Hout+ phenotype. Under aerobic isolation conditions two Hup+ isolates were obtained, whereas under microaerophilic conditions five Hup+ and two Hout+ isolates were found. The nine isolates differed on the basis of 24 standard bacteriological characteristics or fatty acid composition. Five of the nine organisms were isolated from soil around root nodules, whereas the other four were found distributed among the other three soil environments. On the basis of the microaerophilic isolations, 4.8% of the total procaryotic isolates from soil around root nodules were capable of oxidizing H2, and 1.2% could produce H2. Two of the Hup+ isolates were identified as Rhizobium meliloti by root nodulation tests, but the fact that none of the isolates reduced C2H2 under the assay conditions suggested that the H2 metabolism traits were associated with various hydrogenase systems rather than with nitrogenase activity. Results from this study support the concept that H2 evolution by alfalfa root nodules has a significant effect on the surrounding microenvironment and influences the number and diversity of bacteria occupying that region.  相似文献   

6.
7.
Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm1021 and two other Sinorhizobium strains. Plant shoot dry weights, plant nitrogen content and nodule distribution, morphology and number were analysed. Compared with nitrogen-fed controls, Sm1021 was ineffective or partially effective on all hosts tested (excluding M. sativa), as measured by reduced dry weights and shoot N content. Against an effective strain, Sm1021 on M. truncatula accessions produced more nodules, which were small, pale, more widely distributed on the root system and with fewer infected cells. The Sm1021-M. truncatula symbiosis is poorly matched for N(2) fixation and the strain could possess broader N(2) fixation deficiencies. A possible origin for this reduction in effectiveness is discussed. An alternative sequenced strain, effective at N(2) fixation on M. truncatula A17, is Sinorhizobium medicae WSM419.  相似文献   

8.
We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191.  相似文献   

9.
In vivo CO2 fixation activity and in vitro phosphoenolpyruvate carboxylase activity were demonstrated in effective and ineffective nodules of alfalfa (Medicago sativa L.) and in the nodules of four other legume species. Phosphoenolpyruvate carboxylase activity was greatly reduced in nodules from both host and bacterially conditioned ineffective alfalfa nodules as compared to effective alfalfa nodules.

Forage harvest and nitrate application reduced both in vivo and in vitro CO2 fixation activity. By day 11, forage harvest resulted in a 42% decline in in vitro nodule phosphoenolpyruvate carboxylase activity while treatment with either 40 or 80 kilograms nitrogen per hectare reduced activity by 65%. In vitro specific activity of phosphoenolpyruvate carboxylase and glutamate synthase were positively correlated with each other and both were positively correlated with acetylene reduction activity.

The distribution of radioactivity in the nodules of control plants (unharvested, 0 kilograms nitrogen per hectare) averaged 73% into the organic acid and 27% into the amino acid fraction. In nodules from harvested plants treated with nitrate, near equal distribution of radioactivity was observed in the organic acid (52%) and amino acid (48%) fractions by day 8. Recovery to control distribution occurred only in those nodules whose in vitro phosphoenolpyruvate carboxylase activity recovered.

The results demonstrate that CO2 fixation is correlated with nitrogen fixation in alfalfa nodules. The maximum rate of CO2 fixation for attached and detached alfalfa nodules at low CO2 concentrations (0.13-0.38% CO2) were 18.3 and 4.9 nanomoles per hour per milligram dry weight, respectively. Nodule CO2 fixation was estimated to provide 25% of the carbon required for assimilation of symbiotically fixed nitrogen in alfalfa.

  相似文献   

10.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   

11.
Laboratory, growth chamber and field experiments were conducted to select among 226 isolates of Rhizobium meliloti for the ability to grow, nodulate alfalfa (Medicago sativa L.) and support N2-dependent plant growth between 9° and 12°C. There was wide variation in the abilities of R. meliloti isolates to grow and form nodules at 10°C. Culture doubling times (td) varied from 1 to 155h, and the number of nodules formed on alfalfa in growth pouches in 2 weeks varied from 0 to 3.8 nodules per plant. Nodulation occurred at 9°C, but there was no significant N2-dependent plant growth at this temperature. However, several isolates of R. meliloti had the ability to nodulate alfalfa and produce N2-dependent growth at root temperatures between 10° and 12°C root temperature than did 14 other isolates tested. In field experiments, inoculation with strain NRG-34 resulted in greater nodule numbers, nodule weight, proportion of nodules occupied by the inoculant strain and plant weight than did inoculation with a commercial strain (NRG-185). These results permitted selection of a strain with better low-temperature competitive abilities than the currently available commercial strains.  相似文献   

12.
13.
Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found.  相似文献   

14.
Medicago sativa L. (Alfalfa) is an important forage crop legume in Saudi Arabia due to its high nutritive value and yield. Soil bacteria exist in root or root-nodules of Medicago sativa in either symbiotic relationships or in associations. In the current study, the endophytic bacterium Bacillus megaterium BMN1 was isolated from surface-sterilized root-nodules of Medicago sativa and characterized phenotypically and genotypically. The results indicated that BMN1 consumed a variety of sugars as sole carbon source, and produced catalase and amylase but not urease. BMN1 exhibited some plant growth-promoting traits, such as production of indole acetic acid and acetoin, and solublization of inorganic phosphate. In addition, comparative sequence analysis of the 16S rRNA gene showed that BMN1 exhibited 99 % homology with Bacillus megaterium. In addition, BMN1 could not nodulate alfalfa when re-inoculated but the strain enhanced root growth parameters compared to uninoculated plants. Co-inoculation of BMN1with Sinorhizobium meliloti increased not only the number of nodules formed on roots of alfalfa but also root length and root dry weight under greenhouse conditions. Furthermore, the effects BMN1 inoculation on the growth of Lens esculentus, Phaseolus vulgaris and Pisum sativum were also assessed. The length of the primary root, number of secondary roots and dry weight of roots of the three crop legumes were significantly increased upon inoculation by Bacillus megaterium compared to uninoculated control plants. In conclusion, BMN1 belongs to the group of plant growth promoting rhizobacteria and could have significant agricultural applications.  相似文献   

15.
Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation   总被引:1,自引:0,他引:1  
The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.  相似文献   

16.
Alfalfa Root Flavonoid Production Is Nitrogen Regulated   总被引:8,自引:2,他引:6       下载免费PDF全文
Flavonoids produced by legume roots are signal molecules acting both as chemoattractants and nod gene inducers for the symbiotic Rhizobium partner. Combined nitrogen inhibits the establishment of the symbiosis. To know whether nitrogen nutrition could act at the level of signal production, we have studied the expression of flavonoid biosynthetic genes as well as the production of flavonoids in the roots of plants grown under nitrogen-limiting or nonlimiting conditions. We show here that growth of the plant under nitrogen-limiting conditions results in the enhancement of expression of the flavonoid biosynthesis genes chalcone synthase and isoflavone reductase and in an increase of root flavonoid and isoflavonoid production as well as in the Rhizobium meliloti nod gene-inducing activity of the root extract. These results indicate that in alfalfa (Medicago sativa L.) roots, the production of flavonoids can be influenced by the nitrogen nutrition of the plant.  相似文献   

17.
In addition to leghemoglobin, at least nine nodule-specific polypeptides from the alfalfa (Medicago sativa L.)-Rhizobium meliloti symbiosis were identified by immune assay. Some of these polypeptides may be subunits of larger proteins but none appeared to be subunits of the same multimeric protein. All nine of the nodule-specific polypeptides were localized to within the plant cytosol; they were not found in extracts of bacteroids or in the peribacteroid space. At least one of these nodule-specific polypeptides was found to be antigenically related to nodule-specific polypeptides in pea and/or soybean. Ineffective nodules elicited by R. meliloti strains containing mutations in four different genes required for nitrogenase synthesis contained reduced concentrations of leghemoglobin and of several of the nodule-specific polypeptides. Other nodule-specific polypeptides were unaltered or actually enriched in the ineffective nodules. Many of the differences between the ineffective and effective nodules were apparent in nodules harvested shortly after the nodules became visible. These differences were greatly amplified in older nodules. When the four ineffective nodule types were compared to one another, there were clear quantitative differences in the concentrations of several of the nodule-specific polypeptides. These differences suggest that lack of a functional nitrogenase does not have a single direct effect on nodule development.  相似文献   

18.
Colony characteristics, growth in litmus milk, precipitation in calcium glycerophosphate medium and utilization of carbon sources of the root-nodule bacteria isolated from the tropical legumes Leucaena, Mimosa, Acacia, Sesbania and Lablab were similar to fast-growing rhizobia of temperate legumes, particularly Rhizobium meliloti. In agglutination tests, isolates from each host shared antigens with one or more of five Rhizobium strains from Leucaena. Infective characteristics of the fast-growing rhizobia were studied in modified Leonard jars and in agar culture. Cross-infections by rhizobia between these plants were common and the association often effective. Lablab was effectively nodulated by its own fast-growing isolate but only formed root swellings, possibly ineffective pseudonodules, with the other isolates. Slow-growing rhizobia which were able to nodulate Macroptilium atropurpureus were unable to form nodules on these legumes except Lablab which was considered more akin to the cowpea group. All fast-growing isolates nodulated, often effectively, Vigna unguiculata and V. unguiculata ssp. sesquipedalis. The isolate from Lablab also effectively nodulated a number of other tropical legumes which have previously only been reported to nodulate with slow-growing nodule bacteria and it also produced ineffective nodulation on Medicago sativa. This is the first record of an effective fast-growing isolate from Lablab.  相似文献   

19.
Respiration in support of N(2) fixation by rhizobia in legume root nodules depends on an adequate supply of O(2), but excessive O(2) can damage nitrogenase, the key enzyme. The movement of O(2) into and within the nodule is driven by gradients in the concentration of O(2) or in the oxygenation of the O(2)-carrier, leghaemoglobin. Steeper gradients may increase flux to the sites of respiration, but gradients also raise the possibility of inadequate O(2) in some nodule zones and excessive O(2) in others. No detailed study of O(2) gradients in the interior of nodules has been published previously. Spectral changes in leghaemoglobin with oxygenation, previously used to measure the average O(2) status of the nodule interior, were used to map longitudinal gradients in O(2) and in respiratory capacity in the elongated nodules of alfalfa (Medicago sativa L.) and sweetclover (Melilotus officinalis L.). Variability among nodules under air in the magnitude and direction of internal O(2) gradients was seen in both species. Despite consistently higher respiratory capacity near the meristematic tip, a majority of nodules had higher O(2) towards the tip than towards the base. These results contrast with a previous report, apparently based on limited data, but they are consistent with anatomical and tracer studies showing higher gas permeability near the tip.  相似文献   

20.
Fluorescent in situ hybridization (FISH) was applied to diploid and tetraploid subspecies of alfalfa (Medicago sativa L.) to investigate the distribution of rRNA genes and to utilize the sites of 18S-5.8S-25S rDNA and 5S rDNA sequences as markers for studying the genome evolution within the species. Medicago glomerata Balb., the species considered to be the ancestor of alfalfa, was included in this study in order to obtain more information on the phylogenetics of alfalfa. Simultaneous in situ hybridization was performed with the probes pTa71 and pXVI labeled with digoxigenin and biotin, respectively. In the diploid taxa, M. glomerata, M. sativa ssp. coerulea Schmalh and ssp. falcata Arcangeli, the 18S-5.8S-25S rDNA sequences were mapped to two sites corresponding to the secondary constrictions of the nucleolar chromosome pair, while 5S rDNA appeared to be distributed in two pairs of sites. Chromosomes carrying 5S loci could be distinguished on the basis of their morphological characteristics. The number of rDNA sites detected in the tetraploid M. sativa ssp. falcata and ssp. sativa (L.) L. & L. were twice the number found in the respective diploid ssp. falcata and ssp. coerulea. The results of this study show that the distribution of ribosomal genes was maintained during the evolutionary steps from the primitive diploid to the cultivated alfalfa. Modifications of the number of rRNA loci were not observed. The importance of in situ hybridization for improving karyotype analysis in M. sativa L. is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号