首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a simple method for extracting DNA from the marine bacteria Hahella chejuensis, a Streptomyces sp., and a Cytophaga sp. Previously, DNA purification from these strains was hindered by the presence of extracellular materials. In our extraction method, the marine bacteria are lysed by freezing and grinding in liquid nitrogen, and treated with SDS. The extracted DNA is purified using a phenol/chloroform mixture, and precipitated in isopropanol. The extracted DNA is of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion, genomic DNA blot hybridization, and genomic DNA library construction. We used this method to extract genomic DNA from several other marine bacteria. Our method is a reproducible, simple, and rapid technique for routine DNA extractions from marine bacteria. Furthermore, the low cost of this method makes it attractive for large-scale studies.  相似文献   

2.
泰泽病原体基因组DNA提取方法的建立   总被引:1,自引:1,他引:0  
目的 提取泰泽病原体基因组DNA ,为建立该菌基因组文库奠定基础。方法 使用密度梯度离心结合酶解消化方法、酶解消化方法、本研究建立方法即过滤盐析离心法 ,从感染肝脏组织纯化泰泽病原体 ,并比较三种方法纯化泰泽病原体效果 ;采用氯化苄法、试剂盒、酚法提取泰泽病原体基因组DNA ,并比较三种方法提取基因组DNA质量 ;鉴定酚法提取泰泽病原体基因组DNA特异性。结果 使用过滤盐析离心法从感染肝脏组织纯化泰泽病原体 ,采用酚法提取其基因组DNA ,所获得的基因组DNA特异性好、纯度高、DNA片段长度大于 5 0kb ,且均一性好 ,无降解。结论 本研究首次成功提取泰泽病原体基因组DNA ,可用于多种分子生物学实验  相似文献   

3.
The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Environmental DNA (eDNA) analysis has recently been applied to the study of aquatic macroorganisms. In most studies, sample water was filtered and the extracted DNA from the residues on the filter used for the following molecular analysis to detect species of interest. This quick, new biomonitoring method has received broad attention, but some unknowns remain, such as the eDNA yield in relation to water quality. Previous studies suggest that eDNA is composed of various forms, such as the free-floating naked form and in organelles and cells. Therefore, the eDNA yield in the filtration and extraction steps might change depending on the composition of eDNA. Especially the filtration efficiency of free-floating DNA would be affected by the electrical effect of water pH. In this study, not only the free-floating naked DNA, but also all DNA fragments released from the organisms and contained in the water were defined as eDNA, including cells and organelles. We examined (1) the effect of water pH on the eDNA yield at filtration and (2) the effect of proteinase K treatment on the extraction efficiency of DNA from filter samples, with consideration of the variety of the eDNA forms in water. In a laboratory experiment using the purified DNA of common carp (Cyprinus carpio carpio) spiked into ultrapure water, the water pH and DNA yield showed a negative relationship within the pH range of 5–9, that is, the DNA yield was higher in acidic conditions, plausibly because of pH-dependent adsorption onto the glass fiber filter at the filtration step. In case the field water contained eDNA derived from the inhabiting common carp and the purified DNA of ayu (Plecoglossus altivelis altivelis) spiked in the sample as an internal standard, adjustment of the pH to 5 prior to filtration did not increase the eDNA yield of common carp, and the spiked ayu DNA was not detected at all. During the DNA extraction step, a standard protocol including proteinase K treatment marked higher DNA yield than that without proteinase K treatment. Overall, the present results indicate successful collection of eDNA using filters without any special attention to the pH of the sample water, and a conventional protocol with proteinase K treatment is appropriate for eDNA recovery.  相似文献   

6.
A new method for the extraction of bacterial DNA from soil has been developed. Soil samples of 50 g were dispersed, and bacteria were released by use of a cation-exchange resin; subsequently, bacteria were separated from soil particles by low-speed centrifugation and lysed with lysozyme and ionic detergent, and the DNA was then purified by CsCl-ethidium bromide equilibrium density centrifugation. The extracted DNA was of high molecular weight and sufficiently pure for restriction enzyme digestion, DNA-DNA hybridization, and amplification by the polymerase chain reaction. The advantages of the new method are that the separation of bacteria from soil is considerably faster than by repeated blending, more samples can be handled, and furthermore no aerosols are formed during separation. Also, we investigated whether the CsCl-ethidium bromide equilibrium density centrifugation could be replaced by purification using Gene-Clean. However, this method produced DNAs which were insufficiently pure for several types of analysis. The new method was used to study survival of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading Pseudomonas cepacia DBO1 (pRO101) in unamended soil and in soil amended with 2,4-D. We found that the degrading strain, irrespective of inoculation level, was able to grow to the same high numbers in soil amended with 2,4-D, while the strain in nonamended soil were maintained at the inoculation level. Detection based on DNA extraction and subsequent dot blot DNA-DNA hybridization was in accordance with detection by plating on selective medium.  相似文献   

7.
土壤微生物的分离、提取与纯化研究进展   总被引:16,自引:2,他引:16  
综合评述了土壤微生物提取与纯化研究的最新进展及存在的主要问题。土壤微生物的分离提取过程一般分为土壤分散、提取与纯化3个步骤。采用过滤、离心和淘选3种方法可以成功地分离提取大部分土壤细菌;但土壤真菌的提取则相对较为困难,目前可采用的方法有旋转框技术、液相提取与滤膜检测、以及低速离心技术,这些方法可提取出部分真菌菌丝。两相分离技术可用以提取的土壤微生物进行纯化。  相似文献   

8.
A procedure was developed for harvesting gram quantities of microbial biomass from oligotrophic waters, when mixed populations are present in low abundance. Picoplankton from Atlantic Ocean (Hydrostation S, Sargasso Sea) and Pacific Ocean (Aloha Station) sites were collected in a three-stage process: (i) collection of seawater through an intake covered with 10-microns-pore Nytex; (ii) concentration by a tangential flow filtration device equipped with 10 ft2 (0.929 m2) of 0.1-micron-pore fluorocarbon membrane; (iii) collection of cells from concentrate by centrifugation. The overall efficiency of picoplankton recovery was at least 37%. The cellular morphotypes recovered matched those of the original population. DNA was prepared from frozen cell pellets by enzymatic digestion, solvent extraction, and isopycnic centrifugation. As indicated by the binding of kingdom-specific hybridization probes to the purified DNA, the Sargasso Sea picoplankton in this collection were largely eubacteria.  相似文献   

9.
A procedure was developed for harvesting gram quantities of microbial biomass from oligotrophic waters, when mixed populations are present in low abundance. Picoplankton from Atlantic Ocean (Hydrostation S, Sargasso Sea) and Pacific Ocean (Aloha Station) sites were collected in a three-stage process: (i) collection of seawater through an intake covered with 10-microns-pore Nytex; (ii) concentration by a tangential flow filtration device equipped with 10 ft2 (0.929 m2) of 0.1-micron-pore fluorocarbon membrane; (iii) collection of cells from concentrate by centrifugation. The overall efficiency of picoplankton recovery was at least 37%. The cellular morphotypes recovered matched those of the original population. DNA was prepared from frozen cell pellets by enzymatic digestion, solvent extraction, and isopycnic centrifugation. As indicated by the binding of kingdom-specific hybridization probes to the purified DNA, the Sargasso Sea picoplankton in this collection were largely eubacteria.  相似文献   

10.
Several procedures were compared for reliable PCR detection of Ralstonia solanacearum in common substrates (plant, seed, water and soil). In order to prevent the inhibition of PCR by substances contained in crude extracts, numerous DNA extraction procedures as well as additives to buffers or PCR mixtures were checked. Our results showed that the efficiency of these methods or compounds depended greatly upon the nature of the sample. Consequently, preparation of samples prior to PCR depended upon sample origin. Simple methods such as a combined PVPP/BSA treatment or the association of filtration and centrifugation for detecting the bacterium in plant or water samples were very powerful. DNA capture also efficiently overcame PCR inhibition problems and ensured the detection of R. solanacearum in environmental samples. However, the commercial DNA extraction QIAamp kit appeared to be the most effective tool to guarantee the accurate PCR detection of the pathogen whatever the origin of the sample; this was particularly true for soil samples where the commonly used methods for the detection of R. solanacearum were inefficient. This study demonstrates that using an appropriate procedure, PCR is a useful and powerful tool for detecting low levels of R. solanacearum populations in their natural habitats.  相似文献   

11.
Symbionts of the marine sponge Halichondria okadai are promising as a source of natural products. Metagenomic technology is a powerful tool for accessing the genetic and biochemical potential of bacteria. Hence, we established a method of recovering bacterial-enriched metagenomic DNA by stepwise centrifugation. The metagenomic DNA was analyzed by ultrafast 454-pyrosequencing technology, and the results suggested that more than three types of bacterial DNA, Alphaproteobacteria, Actinobacteria, and Cyanobacteria, had been recovered, and that eukaryotic genes comprised only 0.02% of the metagenomic DNA. These results indicate that stepwise centrifugation and real-time quantitative PCR were effective for separating sponge cells and symbiotic bacteria, and that we constructed a bacteria-enriched metagenomic library from a marine sponge, H. okadai, selectively for the first time.  相似文献   

12.
Separation of bacterial cells from soil is a key step in the construction of metagenomic BAC libraries with large DNA inserts. Our results showed that when combined with sodium pyro-phosphate and homogenization for soil dispersion, sucrose density gradient centrifugation (SDGC) was more effective at separating bacteria from soil than was low speed centrifugation (LSC). More than 70% of the cells, along with some soil colloids, were recovered with one round of centrifugation. A solution of 0.8% NaCl was used to resuspend these cell and soil pellets for purification with nycodenz density gradient centrifugation (NDGC). After purification, more than 30% of the bacterial cells in the primary soil were extracted. This procedure effectively removed soil contamination and yielded sufficient cells for high molecular weight (HMW) DNA isolation. Ribosomal intergenic spacer analysis (RISA) showed that the microbial community structure of the extracted cells was similar to that of the primary soil, suggesting that this extraction procedure did not significantly change the the soil bacteria community structure. HMW DNA was isolated from bacterial cells extracted from red soil for metagenomic BAC library construction. This library contained DNA inserts of more than 200 Mb with an average size of 75 kb.  相似文献   

13.
Many marine bacteria demonstrate antibiotic activity against organisms of terrestrial origin. Low molecular weight antibiotics have been extracted and, in some cases, purified, but few attempts have been made to isolate high molecular weight antibiotics produced by marine bacteria. In the study reported here, a high molecular weight antibiotic was extracted from whole cells ofAlteromonas strain P18 (NCMB 1890) grown on 2216E medium. Purification included ammonium sulfate precipitation, ultracentrifugation, chromatography on DEAE cellulose, and gel filtration on Ultrogel. A rapid method for measuring specific activity of the antibiotic was developed.  相似文献   

14.
pBV-1, a recombinant plasmid that contains a chromosomal DNA fragment from Bacteroides vulgatus, hybridized to DNA from B. vulgatus but not to DNA from other colonic Bacteroides species. This plasmid was used as a DNA probe to detect and enumerate B. vulgatus in pure culture, in mixed cultures, and in a bacterial fraction from human feces. Bacteria in a pure or mixed culture were lysed by heating the culture in NaOH. The DNA in the disrupted cell suspension was then trapped on nitrocellulose paper by vacuum filtration. If fecal samples were used instead of pure or mixed cultures, it was first necessary to partially purify the DNA by low-speed centrifugation (2,000 X g) and phenol-chloroform extraction before filtering. When 32P-labeled pBV-1 was incubated with filters containg B. vulgatus DNA, the amount of radioactivity that bound to the filters was proportional to the number of B. vulgatus filtered as long as the filtering capacity of the nitrocellulose was not exceeded. Using this procedure, we obtained a value for the concentration of B. vulgatus in human feces (2 X 10(10) to 3 X 10(10) per g of dry weight) that is similar to values obtained by other investigators using conventional bacteriological techniques (3 X 10(10) to 6 X 10(10) per g of dry weight). The advantage of the DNA hybridization method over conventional techniques is that it is not necessary to isolate pure cultures of bacteria from complex specimens such as feces. Furthermore, our method bypasses the cumbersome set of biochemical tests normally used to identify anaerobic bacteria. The major limitation of our method is its sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
pBV-1, a recombinant plasmid that contains a chromosomal DNA fragment from Bacteroides vulgatus, hybridized to DNA from B. vulgatus but not to DNA from other colonic Bacteroides species. This plasmid was used as a DNA probe to detect and enumerate B. vulgatus in pure culture, in mixed cultures, and in a bacterial fraction from human feces. Bacteria in a pure or mixed culture were lysed by heating the culture in NaOH. The DNA in the disrupted cell suspension was then trapped on nitrocellulose paper by vacuum filtration. If fecal samples were used instead of pure or mixed cultures, it was first necessary to partially purify the DNA by low-speed centrifugation (2,000 X g) and phenol-chloroform extraction before filtering. When 32P-labeled pBV-1 was incubated with filters containg B. vulgatus DNA, the amount of radioactivity that bound to the filters was proportional to the number of B. vulgatus filtered as long as the filtering capacity of the nitrocellulose was not exceeded. Using this procedure, we obtained a value for the concentration of B. vulgatus in human feces (2 X 10(10) to 3 X 10(10) per g of dry weight) that is similar to values obtained by other investigators using conventional bacteriological techniques (3 X 10(10) to 6 X 10(10) per g of dry weight). The advantage of the DNA hybridization method over conventional techniques is that it is not necessary to isolate pure cultures of bacteria from complex specimens such as feces. Furthermore, our method bypasses the cumbersome set of biochemical tests normally used to identify anaerobic bacteria. The major limitation of our method is its sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Both naturally occurring marine sediments and artificial sediments were used as supports for natural transformation of marine bacteria. While transformation of Pseudomonas stutzeri ZoBell suspended in artificial seawater was not detected when recipient cells and rifampin resistance DNA were loaded onto sterile sediment columns, transformation could be detected at frequencies 4 to 20 times that of spontaneous resistance when recipient cells and rifampin resistance DNA were loaded onto sterile sediment columns. Treatment of these columns with DNase I reduced transformation frequencies to levels comparable to those of spontaneous-resistance frequencies. Sediments with higher organic contents supported higher frequencies of transformation than did those with lower amounts of organic matter. Transformation was also detected when recipient cells and DNA were loaded on columns prepared from nonsterile sediments, although the frequencies of transformation were lower than when sterile sediments were used. Finally, nonsterilized sediments that were not supplemented with laboratory strains did not support detectable levels of transformation in sediment columns, but when these same sediments were transferred to filters and placed on complex media, transformation was detected at a frequency three times that for spontaneous resistance. This transformation frequency was partially reduced to levels near that for spontaneous resistance by the addition of DNase I to sediment filters. These results indicate that marine sediments facilitate the uptake and expression of exogenous DNA by transformable marine bacteria and that sediments are a more likely niche for natural transformation than the water column in the marine environment.  相似文献   

17.
AIMS: To create a fast, sensitive and inexpensive high-throughput method for the extraction of bacterial genomic DNA from selective-enrichment culture media. METHODS AND RESULTS: Lysis of bacteria was achieved using guanidinium isothiocyanate, and DNA was extracted using 96-well glass microfibre filtration plates. Extraction-PCR detected the presence of 1 cfu Yersinia ruckeri and 16 cfu Lactococcus garvieae 200 microl(-1) sample of selective-enrichment medium. CONCLUSION: An efficient method for high-throughput extraction of bacterial genomic DNA from selective-enrichment culture media was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: This method enables detection of covert bacterial infections in fish. The simultaneous extraction of large numbers of samples allows for its use in bacterial monitoring programmes and quarantine.  相似文献   

18.
Antibodies specifically directed to 5-methylcytidine were raised in rabbits and purified by affinity chromatography. The accessibility of 5-methyldeoxycytidine (m5dCyd) to such antibodies was studied with DNAs from various origins. The reaction was followed by measuring the retention of radiolabelled DNA by antibodies on nitrocellulose filters, by immunoprecipitation, by gel filtration and was visualized with the electron microscope. Antibodies did not bind to Escherichia coli B DNA, which is deficient in m5dCyd. Denatured and native DNA from calf thymus, which contains m5dCyd as a minor nucleoside, was weakly retained on the filters whereas DNA extracted from Xanthomonas oryzae XP12 bacteriophage, which is rich in m5dCyd, was well recognized even in the native form.  相似文献   

19.
Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses.  相似文献   

20.
While purified bacterial cells and DNA – the signature of life – from soil and sediment matrices have been extensively studied in a wide range of environments and in different microbial ecosystems, the paucity of data on DNA extraction from contaminated sediments emphasizes the need for further research on the isolation and quantification of bacterial cells and DNA in sediments. Consequently, the Nycondez gradient centrifugation method was applied to extract bacterial cells from contaminated and uncontaminated sediments. Quantitative estimates of recovered bacterial cells were obtained from direct counts performed using DAPI (4′,6′-diamino-2-phenylindole hypochloride) staining couples with fluorescence microscopy and indirect counts (colony-forming units). The estimation was improved by using an efficient method of comparing sediment types composed of quantifying bacterial densities in three steps: S1 the initial freshwater sediments; S2 the first supernatant recovered after mixing the sediments with sodium hexametaphosphate solution followed by centrifugation; and S3 the extracted cells. Total and extracellular DNA were extracted and quantified in each of the three steps. Additional analysis of faecal indicator bacteria (FIB) including E. coli and Enterococcus (ENT) was also performed in each step. The results display considerable variability in the quantity of bacteria cells depending on sediment type, ranging from 1.2 × 105 to 6.2 × 109 cell g?1 dry sediments. The treatment with sodium hexametaphosphate solution (2%) leads to the desorption of bacterial populations which were firmly adsorbed on contaminated sediment surfaces resulting in more than 90% of the FIB being recovered. The Nycondez density gradient centrifugation method makes it possible to extract bacterial cells from freshwater sediments without extracellular DNA so it is ideal for metagenomic analysis of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号