首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of F420 as a parameter for growth or metabolic activity of methanogenic bacteria was investigated. Two representative species of methanogens were grown in batch culture: Methanobacterium bryantii (strain M.o.H.G.) on H2 and CO2, and Methanosarcina barkeri (strain Fusaro) on methanol or acetate. The total intracellular content of coenzyme F420 was followed by high-resolution fluorescence spectroscopy. F420 concentration in M. bryantii ranged from 1.84 to 3.65 μmol · g of protein−1; and in M. barkeri grown with methanol it ranged from 0.84 to 1.54 μmol · g−1 depending on growth conditions. The content of F420 in M. barkeri was influenced by a factor of 2 depending on the composition of the medium (minimal or complex) and by a factor of 3 to 4 depending on whether methanol or acetate was used as the carbon source. A comparison of F420 content with protein, cell dry weight, optical density, and specific methane production rate showed that the intracellular content of F420 approximately followed the increase in biomass in both strains. In contrast, no correlation was found between specific methane production rate and intracellular F420 content. However, qCH4(F420), calculated by dividing the methane production rate by the coenzyme F420 concentration, almost paralleled qCH4(protein). These results suggest that F420 may be used as a specific parameter for estimating the biomass, but not the metabolic activity, of methanogens; hence qCH4(F420) determined in mixed populations with complex carbon substrates must be considered as measure of the actual methanogenic activity and not as a measure of potential activity.  相似文献   

2.
Coenzyme F420 has been assayed by high-performance liquid chromatography with fluorimetric detection; this permits quantification of individual coenzyme F420 analogs whilst avoiding the inclusion of interfering material. The total intracellular coenzyme F420 content of Methanosarcina barkeri MS cultivated on methanol and on H2-CO2 and of Methanosarcina mazei S-6 cultured on methanol remained relatively constant during batch growth. The most abundant analogs in M. barkeri were coenzymes F420-2 and F420-4, whilst in M. mazei coenzymes F420-2 and F420-3 predominated. Significant changes in the relative proportions of the coenzyme F420 analogs were noted during batch growth, with coenzymes F420-2 and F420-4 showing opposite responses to each other and the same being also true for coenzymes F420-3 and F420-5. This suggests that an enzyme responsible for transferring pairs of glutamic acid residues may be active. The degradation fragment FO was also detected in cells in late exponential and stationary phase. Coenzyme F420 analogs were present in the culture supernatant of both methanogens, in similar proportions to that in the cells, except for FO which was principally located in the supernatant.  相似文献   

3.
Coenzyme F420 has been assayed by high-performance liquid chromatography with fluorimetric detection; this permits quantification of individual coenzyme F420 analogs whilst avoiding the inclusion of interfering material. The total intracellular coenzyme F420 content of Methanosarcina barkeri MS cultivated on methanol and on H2-CO2 and of Methanosarcina mazei S-6 cultured on methanol remained relatively constant during batch growth. The most abundant analogs in M. barkeri were coenzymes F420-2 and F420-4, whilst in M. mazei coenzymes F420-2 and F420-3 predominated. Significant changes in the relative proportions of the coenzyme F420 analogs were noted during batch growth, with coenzymes F420-2 and F420-4 showing opposite responses to each other and the same being also true for coenzymes F420-3 and F420-5. This suggests that an enzyme responsible for transferring pairs of glutamic acid residues may be active. The degradation fragment FO was also detected in cells in late exponential and stationary phase. Coenzyme F420 analogs were present in the culture supernatant of both methanogens, in similar proportions to that in the cells, except for FO which was principally located in the supernatant.  相似文献   

4.
The coenzyme F(420) content of granular sludge grown on various substrates and substrate combinations was measured, and the potential of the sludge to form methane (maximum specific methane production rate) from hydrogen, formate, acetate, propionate, and ethanol was determined. The F(420) content varied between 55 nmol g of volatile suspended solids (VSS) for sludge grown on acetate and 796 nmol g of VSS for sludge grown on propionate. The best correlation was found between the F(420) content and the potential activity for methane formation from formate; almost no correlation, however, was found with acetate as the test substrate. The ratio between the potential methanogenic activities (qch(4)) of sludges grown on various substrates and their F(420) content was in general highest for formate (48.2 mumol of CH(4) mumol of F(420) min) and lowest for propionate (6.9 mumol of CH(4) mumol of F(420) min) as test substrates. However, acetate-grown granular sludge with acetate as test substrate showed the highest ratio, namely, 229 mumol of CH(4) mumol of F(420) min. The data presented indicate that the F(420) content of methanogenic consortia can be misleading for the assessment of their potential acetoclastic methanogenic activity.  相似文献   

5.
The ability of hydrolytic products of coenzyme F420 to substitute for F420 in the hydrogenase and nicotinamide adenine dinucleotide phosphate-liniked hydrogenase systems of Methanobacterium strain M.o.H. was kinetically determined. The nicotinamide adenine dinucleotide phosphate-linked hydrogenase system was employed to quantitate the levels of F420 in a number of methanogenic bacteria as well as in some nonmethanogens. Methanobacterium ruminantium and Methanosarcina barkeri contained low levels of F420, whereas other methanogens tested contained high levels (100 to 400 mg/kg of cells). F420 from six of the seven methanogens was tested by thin-layer electrophoresis and was found to be electrophoretically identical to that purified from Methanobacterium strain M.o.H. The only exception was M. barkeri, which contained a more electronegative derivative of F420. Acetobacterium woodii, Escherichia coli, and yeast extract contained no compounds able to substitute for F420 in the nicotinamide adenine dinucleotide phosphate-linked hydrogenase system.  相似文献   

6.
The cytological localization of the 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing hydrogenase of Methanosarcina barkeri Fusaro was determined by immunoelectron microscopy, using a specific polyclonal rabbit antiserum raised against the homogeneous deazaflavin-dependent enzyme. In Western blot (immunoblot) experiments this antiserum reacted specifically with the native coenzyme F420-reducing hydrogenase, but did not cross-react with the coenzyme F420-nonreducing hydrogenase activity also detectable in crude extracts prepared from methanol-grown Methanosarcina cells. Immunogold labelling of ultrathin sections of anaerobically fixed methanol-grown cells from the exponential growth phase revealed that the coenzyme F420-reducing hydrogenase was predominantly located in the vicinity of the cytoplasmic membrane. From this result we concluded that the deazaflavin-dependent hydrogenase is associated with the cytoplasmic membrane in intact cells of M. barkeri during growth on methanol as the sole methanogenic substrate, and a possible role of this enzyme in the generation of the electrochemical proton gradient is discussed.  相似文献   

7.
Abstract Sea sediments in tropical regions have been less studied for methanogenesis and methanogens present therein. Three species of methanogens viz. Methanobacterium bryantii, Methanococcus voltae and Methanosarcina barkeri were isolated from Arabian sea sediments collected near the west coast of India. Maximum methane was formed by M. voltae at 3.0% (w/v) NaCl and other two methanogens at 0.06% (w/v) NaCl. M. bryantii and M. barkeri tolerated 2.5 and 3.0% (w/v) NaCl respectively due to which these methanogens must have survived in salt conditions of the sea sediments.  相似文献   

8.
The 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing and methyl-viologen-reducing hydrogenase of the anaerobic methanogenic archaebacterium Methanosarcina barkeri strain Fusaro has been purified 64-fold to apparent electrophoretic homogeneity. The purified enzyme had a final specific activity of 11.5 mumol coenzyme F420 reduced.min-1.mg protein-1 and the yield was 4.8% of the initial deazaflavin-reducing activity. The hydrogenase exists in two forms with molecular masses of approximately 845 kDa and 198 kDa. Both forms reduce coenzyme F420 and methyl viologen and are apparently composed of the same three subunits with molecular masses of 48 kDa (alpha), 33 kDa (beta) and 30 kDa (gamma). The aerobically purified enzyme was catalytically inactive. Conditions for anaerobic reductive activation in the presence of hydrogen, 2-mercaptoethanol and KCl or methyl viologen were found to yield maximal hydrogenase activity. Determination of the apparent Km of coenzyme F420 and methyl viologen gave values of 25 microM and 3.3 mM, respectively. The respective turnover numbers of the high molecular mass form of the hydrogenase are 353 s-1 and 9226 s-1.  相似文献   

9.
Methanocaldococcus jannaschii is a hypertheromphilic, strictly hydrogenotrophic, methanogenic archaeon of ancient lineage isolated from a deep-sea hydrothermal vent. It requires sulfide for growth. Sulfite is inhibitory to the methanogens. Yet, we observed that M. jannaschii grows and produces methane with sulfite as the sole sulfur source. We found that in this organism sulfite induces a novel, highly active, coenzyme F(420)-dependent sulfite reductase (Fsr) with a cell extract specific activity of 0.57 mumol sulfite reduced min(-1) mg(-1) protein. The cellular level of Fsr protein is comparable to that of methyl-coenzyme M reductase, an enzyme essential for methanogenesis and a possible target for sulfite. Purified Fsr reduces sulfite to sulfide using reduced F(420) (H(2)F(420)) as the electron source (K(m): sulfite, 12 microm; H(2)F(420), 21 microm). Therefore, Fsr provides M. jannaschii an anabolic ability and protection from sulfite toxicity. The N-terminal half of the 70-kDa Fsr polypeptide represents a H(2)F(420) dehydrogenase and the C-terminal half a dissimilatory-type siroheme sulfite reductase, and Fsr catalyzes the corresponding partial reactions. Previously described sulfite reductases use nicotinamides and cytochromes as electron carriers. Therefore, this is the first report of a coenzyme F(420)-dependent sulfite reductase. Fsr homologs were found only in Methanopyrus kandleri and Methanothermobacter thermautotrophicus, two strictly hydrogenotrophic thermophilic methanogens. fsr is the likely ancestor of H(2)F(420) dehydrogenases, which serve as electron input units for membrane-based energy transduction systems of certain late evolving archaea, and dissimilatory sulfite reductases of bacteria and archaea. fsr could also have arisen from lateral gene transfer and gene fusion events.  相似文献   

10.
Río Tinto (Iberian Pyritic Belt, SW Spain) is well known for its low pH (mean pH 2.3), high redox potential (> +400 mV) and high concentration of heavy metals. In this work we describe and analyse the presence of methanogenic archaea in the extreme acidic and oxidizing environment of the Tinto basin. Methane formation was measured in microcosms inoculated with sediments from the Rio Tinto basin. Methanol, formate, volatile fatty acids and lactate stimulated the production of methane. Methane formation was associated with a decrease of redox potential and an increase in pH. Cores showed characteristic well-defined black bands in which a high acetate concentration was measured among the otherwise reddish-brown sediments with low acetate concentration. Methanosaeta concilii was detected in the black bands. In enrichment cultures, M. concilii (enriched with a complex substrate mixture), Methanobacterium bryantii (enriched with H(2)) and Methanosarcina barkeri (enriched with methanol) were identified. Our results suggest that methanogens thrive in micro-niches with mildly acidic and reducing conditions within Rio Tinto sediments, which are, in contrast, immersed in an otherwise extremely acidic and oxidizing environment.  相似文献   

11.
Methanosarcina barkeri strain 227 maintained on an acetate medium for 2 years was found to possess hydrogenase, methylcoenzyme M methylreductase, coenzyme F420, and coenzyme M. The levels of these constituents in acetate-grown cells were similar to those found in cells of the same strain grown on methanol or hydrogen and carbon dioxide.  相似文献   

12.
Methanosarcina barkeri strain 227 maintained on an acetate medium for 2 years was found to possess hydrogenase, methylcoenzyme M methylreductase, coenzyme F420, and coenzyme M. The levels of these constituents in acetate-grown cells were similar to those found in cells of the same strain grown on methanol or hydrogen and carbon dioxide.  相似文献   

13.
The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea. In this reaction methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B. The crystal structures of methyl-coenzyme M reductase from Methanosarcina barkeri (growth temperature optimum, 37 degrees C) and Methanopyrus kandleri (growth temperature optimum, 98 degrees C) were determined and compared with the known structure of MCR from Methanobacterium thermoautotrophicum (growth temperature optimum, 65 degrees C). The active sites of MCR from M. barkeri and M. kandleri were almost identical to that of M. thermoautotrophicum and predominantly occupied by coenzyme M and coenzyme B. The electron density at 1.6 A resolution of the M. barkeri enzyme revealed that four of the five modified amino acid residues of MCR from M. thermoautotrophicum, namely a thiopeptide, an S-methylcysteine, a 1-N-methylhistidine and a 5-methylarginine were also present. Analysis of the environment of the unusual amino acid residues near the active site indicates that some of the modifications may be required for the enzyme to be catalytically effective. In M. thermoautotrophicum and M. kandleri high temperature adaptation is coupled with increasing intracellular concentrations of lyotropic salts. This was reflected in a higher fraction of glutamate residues at the protein surface of the thermophilic enzymes adapted to high intracellular salt concentrations.  相似文献   

14.
Methanobacterium thermoautotrophicum deltaH was grown in a fed-batch fermentor and in a chemostat under a variety of 80% hydrogen-20% CO2 gassing regimes. During growth or after the establishment of steady-state conditions, the cells were analyzed for the content of adenylylated coenzyme F420 (factor F390-A) and other methanogenic cofactors. In addition, cells collected from the chemostat were measured for methyl coenzyme M reductase isoenzyme (MCR I and MCR II) content as well as for specific activities of coenzyme F420-dependent and H2-dependent methylenetetrahydromethanopterin dehydrogenase (F420-MDH and H2-MDH, respectively), total (viologen-reducing) and coenzyme F420-reducing hydrogenase (FRH), factor F390 synthetase, and factor F390 hydrolase. The experiments were performed to investigate how the intracellular F390 concentrations changed with the growth conditions used and how the variations were related to changes in levels of enzymes that are known to be differentially expressed. The levels of factor F390 varied in a way that is consistently understood from the biochemical mechanisms underlying its synthesis and degradation. Moreover, a remarkable correlation was observed between expression levels of MCR I and II, F420-MDH, and H2-MDH and the cellular contents of the factor. These results suggest that factor F390 is a reporter compound for hydrogen limitation and may act as a response regulator of methanogenic metabolism.  相似文献   

15.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was 相似文献   

16.
Factor F390 is the 8-OH adenylated form of the deazaflavin coenzyme F420, which is a central electron carrier in methanogenic bacteria. The enzymes catalysing the formation of F390 from ATP and F420 (F390 synthetase) and its hydrolysis into AMP and F420 (F390 hydrolase) were isolated and partially purified from Methanobacterium thermoautotrophicum. Both enzymes were oxygen-stable. The F390 synthetase tended to coelute with coenzyme F420 reducing hydrogenase during all purification steps. The 30-fold purified enzyme was still contaminated with the hydrogenase. The F390 hydrolase was purified 135-fold to a specific activity of 8.6 mumol/min/mg protein. The colourless enzyme consisted of one polypeptide of approximately 27,000 kd.  相似文献   

17.
Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.Subject terms: Biogeochemistry, Biodiversity, Environmental microbiology  相似文献   

18.
Methanomicrococcus blatticola is an obligately anaerobic methanogen that derives the energy for growth exclusively from the reduction of methylated compounds to methane with molecular hydrogen as energy source. Competition for methanol (concentration below 10 microM) and H(2) (concentration below 500 Pa), as well as oxidative stress due to the presence of oxygen are likely to occur in the peripheral region of the cockroach hindgut, the species' normal habitat. We investigated the ecophysiological properties of M. blatticola to explain how it can successfully compete for its methanogenic substrates. The organism showed affinities for methanol (K(m)=5 microM; threshold<1 microM) and hydrogen (K(m)=200 Pa; threshold <0.7 Pa) that are superior to other methylotrophic methanogens (Methanosphaera stadtmanae, Methanosarcina barkeri) investigated here. Thermodynamic considerations indicated that 'methanol respiration', i.e. the use of methanol as the terminal electron acceptor, represents an attractive mode of energy generation, especially at low hydrogen concentrations. Methanomicrococcus blatticola exploits the opportunities by specific growth rates (>0.2 h(-1)) and specific growth yields (up to 7 g of dry cells per mole of methane formed) that are particularly high within the realm of mesophilic methanogens. Upon oxygen exposure, part of the metabolic activity may be diverted into oxygen removal, thus establishing appropriate anaerobic conditions for survival and growth.  相似文献   

19.
Abstract Extracts of acetate-grown Methanosarcina barkeri strain Fusaro formed methane from acetate plus ATP and form acetyl phosphate under H2. Coenzyme A (CoA) is stimulatory. Inhibitors of methanogenesis are cyanide, propyliodide and bromoethanesulfonic acid. In cofactor-free extracts methanogenic activity from acetate was restored by addition of ATP, CoA, coenzyme M and 7-mercaptoheptanoylthreonine phosphate.
An enzyme-bound corrinoid was found to be involved in methanogenesis from acetate.  相似文献   

20.
Sulfate reduction outcompeted methanogenesis at 65 degrees C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0. 83 gCOD. gVSS(-1). day(-1) at the start to a value of less than 0.05 gCOD. gVSS(-1). day(-1), showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0. 22 gCOD. gVSS(-1). day(-1) to a final value of 1.05 gCOD. gVSS(-1). day(-1) showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H(2)/CO(2) and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H(2)/CO(2) and formate. The high and low specific methanogenic activity of sludge on H(2)/CO(2) and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As sulfate reduction in the sludge was also strongly supported by hydrogen, competition between sulfate reducing bacteria and methanogens in the sludge seemed to be mainly for this substrate. Sulfate elimination rates of up to 15 gSO(4)(2-)/L per day were achieved in the reactors. Biomass retention limited the sulfate elimination rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号