共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kästner M Streibich S Beyrer M Richnow HH Fritsche W 《Applied and environmental microbiology》1999,65(5):1834-1842
Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20. 7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds. 相似文献
3.
4.
J. Ramachandran Catherine Behrens 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,496(2):321-328
The catalytic dehalogenation of iodinated derivatives of corticotropin in the presence of tritium was investigated. In 0.1 M acetic acid, complete and rapid removal of iodine was achieved in the presence of freshly prepared palladium or palladium oxide as catalyst, but the specific radioactivity of the product was only 10–20% of the theoretically attainable value. Synthetic human corticotropin containing a 3,5-diiodo tyrosine in position 23 in place of tyrosine was successfully dehalogenated in solvent mixture 0.1 M acetic acid : hexamethylphosphoramide : di dimethylformamide (1 : 10 : 90, v/v) in the presence of palladium oxide and calcium carbonate. The product was obtained in 30% yield after purification by carboxymethyl cellulose chroatography. The tritiated hormone had a specific radioactivity of 46 Ci/mmol (80% of the theoretical value) and was as potent as synthetic human corticotropin in stimulating steroidogenesis and lipolysis. 相似文献
5.
Thermophilic anaerobic biodegradation of [C]lignin, [C]cellulose, and [C]lignocellulose preparations
Thermophilic (55 degrees C) anaerobic enrichment cultures were incubated with [C-lignin]lignocellulose, [C-polysaccharide]lignocellulose, and kraft [C]lignin prepared from slash pine, Pinus elliottii, and C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds. 相似文献
6.
Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat 总被引:1,自引:0,他引:1
The present paper describes an efficient single step chromatographic method for purification of C-Phycocyanin from three cyanobacterial species, i.e., Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine water). C-Phycocyanin from these cyanobacterial species was purified to homogeneity and some of their properties were investigated. The purification involves a multistep treatment of the crude extract by fractional precipitation with ammonium sulfate, followed by ion-exchange chromatography on DEAE-Sepharose CL-6B column. Pure C-Phycocyanin was finally obtained from Spirulina, Phormidium, and Lyngbya spp. with purity ratio (A620/A280) 4.42, 4.43, and 4.59, respectively, further the purity and homogeneity were confirmed by native and SDS-PAGE. The estimated molecular weights of purified C-PC from Spirulina, Phormidium, and Lyngbya spp. were 112, 131, and 81 kDa, respectively. SDS-PAGE of pure C-Phycocyanin yielded two bands corresponding to alpha and beta subunits. The results of SDS-PAGE demonstrate the same molecular weight of beta subunits (24.4 kDa) for all the three cyanobacterial species, whereas the molecular weight of the alpha subunit is different for all (17 kDa Spirulina sp., 19.1 kDa Phormidium sp., 15.2 kDa Lyngbya sp.). Thus, the C-Phycocyanin was characterized as (alphabeta)3 for Spirulina and Phormidium spp., while as (alphabeta)2 for Lyngbya sp. 相似文献
7.
Microbial degradation of [beta-14C]polystyrene and 1,3-diphenylbutane, a compound structurally representing the smallest repeating unit of styrene (dimer), was investigated in soil and liquid enrichment cultures. Degradation rates in soil, as determined by 14CO2 evolution from applied [14C]polystyrene, varied from 1.5 to 3.0% for a 4-month period. Although relatively low, these percentages were 15 to 30 times greater than values previously reported. Enrichment cultures, containing 1,3-diphenylbutane as the only carbon souce, were used to determine the mechanisms of microbial oxidation of the polymer chain ends. Metabolism of 1,3-diphenylbutane appeared to involve the attack by a monooxygenease to form 2-phenyl-4-hydroxyphenylbutane followed by a further oxidation and subsequent fission of the benzene ring to yield 4-phenylvaleric acid and an unidentified 5-carbon fragment via the classic meta-fission pathway. Phenylacetic acid was probably formed from 4-phenylvaleric acid by subsequent beta-oxidation of the side chain, methyl-oxidation and decarboxylation. An initial examination of the population of microorganisms in the diphenylbutane enrichment cultures indicated that these oxidative reactions are carried out by common soil microorganism of the genera Bacillus, Pseudomonas, Micrococcus, and Nocardia. 相似文献
8.
Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. 总被引:3,自引:0,他引:3
In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 micromol g (dry weight)(-1) day(-1) for three freshwater macrophytes and rates between 15 and 83 micromol (dry weight)(-1) day(-1) for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32 degrees C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments. 相似文献
9.
Reimers CE Stecher HA Westall JC Alleau Y Howell KA Soule L White HK Girguis PR 《Applied and environmental microbiology》2007,73(21):7029-7040
The decomposition of marine plankton in two-chamber, seawater-filled microbial fuel cells (MFCs) has been investigated and related to resulting chemical changes, electrode potentials, current efficiencies, and microbial diversity. Six experiments were run at various discharge potentials, and a seventh served as an open-circuit control. The plankton consisted of a mixture of freshly captured phytoplankton and zooplankton (0.21 to 1 mm) added at an initial batch concentration of 27.5 mmol liter(-1) particulate organic carbon (OC). After 56.7 days, between 19.6 and 22.2% of the initial OC remained, sulfate reduction coupled to OC oxidation accounted for the majority of the OC that was degraded, and current efficiencies (of the active MFCs) were between 11.3 and 15.5%. In the open-circuit control cell, anaerobic plankton decomposition (as quantified by the decrease in total OC) could be modeled by three terms: two first-order reaction rate expressions (0.79 day(-1) and 0.037 day(-1), at 15 degrees C) and one constant, no-reaction term (representing 10.6% of the initial OC). However, in each active MFC, decomposition rates increased during the third week, lagging just behind periods of peak electricity generation. We interpret these decomposition rate changes to have been due primarily to the metabolic activity of sulfur-reducing microorganisms at the anode, a finding consistent with the electrochemical oxidization of sulfide to elemental sulfur and the elimination of inhibitory effects of dissolved sulfide. Representative phylotypes, found to be associated with anodes, were allied with Delta-, Epsilon-, and Gammaproteobacteria as well as the Flavobacterium-Cytophaga-Bacteroides and Fusobacteria. Based upon these results, we posit that higher current efficiencies can be achieved by optimizing plankton-fed MFCs for direct electron transfer from organic matter to electrodes, including microbial precolonization of high-surface-area electrodes and pulsed flowthrough additions of biomass. 相似文献
10.
11.
Thermophilic Anaerobic Biodegradation of [14C]Lignin, [14C]Cellulose, and [14C]Lignocellulose Preparations 总被引:2,自引:0,他引:2
下载免费PDF全文

Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds. 相似文献
12.
Zheng QH Gao M Mock BH Wang S Hara T Nazih R Miller MA Receveur TJ Lopshire JC Groh WJ Zipes DP Hutchins GD DeGrado TR 《Bioorganic & medicinal chemistry letters》2007,17(8):2220-2224
The high-affinity choline transporter (CHT1) system is an attractive target for the development of positron emission tomography (PET) biomarkers to probe brain, cardiac, and cancer diseases. An efficient and convenient synthesis of new radiolabeled CHT1 inhibitors [(11)C]hemicholinium-3 and [(18)F]hemicholinium-3 by solid-phase extraction (SPE) technique using a cation-exchange CM Sep-Pak cartridge has been well developed. The preliminary evaluation of both tracers through biodistribution studies in 9L-glioma rats has been performed, and the uptakes in the heart and tumor were observed, while very low brain uptake was seen. 相似文献
13.
14.
Changes in carbon and nitrogen content during decomposition of three macrophytes in freshwater and marine environments 总被引:5,自引:2,他引:5
R. Douglas Hunter 《Hydrobiologia》1976,51(2):119-128
Three species of aquatic plants were analyzed for their ash, organic carbon and nitrogen content both fresh and after decomposition using the mesh bag method Chara contraria A. Br. ex Kütz in a small freshwater pond and Lemna minor L. in a shallow swamp were examined over a 70 day period of in situ decomposition. Fucus vesiculosus L. was examined over a 63 day period of decomposition in a rocky shore and a salt marsh environment.During decomposition Chara showed a decrease in carbon and an increase in nitrogen content while Lemna increased in carbon and decreased in nitrogen, all on an ash-free dry weight basis. Although the C : N ratio of Chara was high initially and that of Lemna relatively low, after decomposition the C : N ratio for the remains of the two plants was nearly the same.
Fucus decomposing in the salt marsh showed no significant change in carbon but increased in nitrogen content while that at the rocky shore decreased in carbon and increased in nitrogen content. Much of the loss in total dry weight in the first few hours of submergence could be attributed to solubilization of ash and of some high C : N ratio organic material. Consistent and significant differences in the C : N ratio of decomposing Fucus at the two marine sites may be attributable to the nature of the decomposer organisms that inhabit these environments. The accumulation of a high proportion of autotrophic microbial biomass (such as purple sulfur bacteria) in the structural carbohydrates of the salt marsh Fucus may have caused these differences.This study suggests that initial differences in nutritional value of aquatic macrophytes diminish during decomposition and that the ultimate C : N ratio attained may be more dependent on the nature of the decomposer organisms present than on the nature of the organic material undergoing decomposition. 相似文献
15.
《Bioscience, biotechnology, and biochemistry》2013,77(2):308-312
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase. 相似文献
16.
Hydrogenase enzyme from the unicellular marine green alga Tetraselmis kochinensis NCIM 1605 was purified 467 fold to homogeneity. The molecular weight was estimated to be approximately 89kDa by SDS-PAGE. This enzyme consists of two subunits with molecular masses of approximately 70 and approximately 19kDa. The hydrogenase was found to contain 10g atoms of Fe and 1g of atom of Ni per mole of protein. The specific activity of hydrogen evolution was 50micromol H(2)/mg/h of enzyme using reduced methyl viologen as an electron donor. This hydrogenase enzyme has pI value approximately 9.6 representing its alkaline nature. The absorption spectrum of the hydrogenase enzyme showed an absorption peak at 425nm indicating that the enzyme had iron-sulfur clusters. The total of 16 cysteine residues were found per mole of enzyme under the denaturing condition and 20 cysteine residues in reduced denatured enzyme indicating that it has two disulfide bridges. 相似文献
17.
FLORIAN MERMILLOD‐BLONDIN DAMIEN LEMOINE JEAN‐CLAUDE BOISSON EMMANUEL MALET BERNARD MONTUELLE 《Freshwater Biology》2008,53(10):1969-1982
1. Invertebrates and aquatic plants often play a key role in biogeochemical processes occurring at the water–sediment interface of aquatic ecosystems. However, few studies have investigated the respective influences of plants and bioturbating animals on ecological processes (nutrient fluxes, benthic oxygen uptake, microbial activities) occurring in freshwater sediments. 2. We developed a laboratory experiment in aquaria to quantify the effects of (i) one invertebrate acting as a bioturbator (Tubifex tubifex); (ii) one submersed plant with a high sediment‐oxygenating potential (Myriophyllum spicatum) and (iii) one submersed plant with a low sediment‐oxygenating potential (Elodea canadensis). 3. The tubificid worms significantly increased the fluxes of nitrogen at the water–sediment interface (influx of nitrate, efflux of ammonium), whereas the two plant species did not have significant influences on these nitrogen fluxes. The differences in nitrogen fluxes between tubificid worms and plants were probably due to the bioirrigation process caused by T. tubifex, which increased water exchanges at the water–sediment interface. Tubifex tubifex and M. spicatum produced comparable reductions of nutrient concentrations in pore water and comparable stimulations of benthic oxygen uptake and microbial communities (percentages of active eubacteria and hydrolytic activity) whereas E. canadensis had a very weak influence on these variables. These differences between the two plants were due to their contrasting abilities to increase oxygen in sediments by radial oxygen losses (release of oxygen from roots). 4. Our study suggests that the bioirrigation process and radial oxygen loss are major functional traits affecting biogeochemical functioning at the water–sediment interface of wetlands. 相似文献
18.
Metabolism of [1-14C]glyoxylate, [1-14C]-glycollate, [1-14C]glycine and [2-14C]-glycine by homogenates of kidney and liver tissue from hyperoxaluric and control subjects
下载免费PDF全文

1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria. 相似文献
19.
Fang Z Fang W Liu J Hong Y Peng H Zhang X Sun B Xiao Y 《Journal of microbiology and biotechnology》2010,20(9):1351-1358
The demand for beta-glucosidases insensitive to product inhibition is increasing in modern biotechnology, for these enzymes would improve the process of saccharification of lignocellulosic materials. In this study, a beta-glucosidase gene which encodes a 442-amino-acid protein was isolated from a marine microbial metagenomic library by functional screening and named as bgl1A. The protein was identified to be a member of GH1 family, and was recombinantly expressed, purified and biochemically characterized. The recombinant beta-glucosidase, Bgl1A, exhibited high level of stability in the presence of various cations and high concentrations of NaCl. Interestingly, it was activated by glucose at concentrations lower than 400 mM. With glucose further increasing, the enzyme activity of Bgl1A was gradually inhibited, but remained 50% original value in even as high as 1,000 mM glucose. These findings indicate Bgl1A might be a potent candidate for industrial applications. 相似文献
20.
M J Garson V Partali S Liaaen-Jensen I L Stoilov 《Comparative biochemistry and physiology. B, Comparative biochemistry》1988,91(2):293-300
1. We present quantitative evidence from incorporation of [1-14C] acetate that the enzymes to synthesise isoprenoids are present in the marine sponge Amphimedon sp. and that efficient carotenoid synthesis takes place. 2. The de novo synthesis of b,b-carotene and (3R,3'R)-zeaxanthin may occur in a chlorophyll a-producing microalgal symbiont with subsequent aromatisation to (3R)-isoagelaxanthin by the sponge itself. 3. Amphimedon sp. contains nuclear-modified sterols derived by modification of conventional dietary sterols. 相似文献