首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short-lived radioactive tracers are used because of the low radiation dose to patients. Another advantage finding increasing use, however, is that the equilibrium activities achieved by continuous administration to a steady state contain kinetic information. This is not the case with long-lived isotopes.The derivation of quantitative kinetic information in the form of rate constants or flows requires the formulation of a model of the system being studied. Several approaches to this have been published based on a model of single compartments with simultaneous arrival of tracer. To deal with more realistic models a method is proposed which uses the analogy between the procedure of continuous administration of short-lived tracer and the Laplace transform. If f(t) is the activity of a long-lived tracer in any part of a system after administration of unit activity to the input, then
oe?stf(t)dt=f(s)
is the “equilibrium” activity of the part after continuous administration of a short-lived tracer of decay constant f(f) is also a value of the Laplace transform of (t).This analogy permits all the theorems of Laplace transform theory to be applied to the analysis of measured activities. The basis of the analogy is explained and examples are given of its application to a number of models which represent actual physiology more realistically than single compartment models. In these applications the transformed equations representing the model, with measured values of activity inserted for each transform, are solved to derive the rate constants. This is different from the use of Laplace transforms where the constant coefficients are known and the initial value problem is solved to find the behaviour of the variables.  相似文献   

2.
We tested the potential of estimating in-field (in situ) nitrogen (N) transformation rates based on soil temperature data and N transformation parameters (Q10 and N transformation rates at standard temperature) obtained through laboratory incubations at three constant temperatures for 4 weeks. This test was conducted based on a comparison between in situ measurements and estimates using soils from 16 sites across 9 regions within the Japanese archipelago. The actual in situ N mineralization and nitrification rates measured using the buried-bag method at 0–50-cm-soil depth were 111 ± 34 and 106 ± 45 kg N ha?1 year?1, respectively, and estimates of both the rate and the amount were largely accurate. For rate alone, estimates were accurate in the 0–10-cm soil layer for annual and seasonal averages (except for spring–summer) whereas for amount alone, estimates were accurate to depths of 50 and 30 cm for N mineralization and nitrification, respectively. Thus, estimates of the rates and amounts were approximately equal to the actual in situ rate/amount, given the wide range of prediction intervals of the field measurement data. The differences between the estimates of N transformation rates derived from hourly measured and monthly average soil temperatures were negligible. Therefore, in situ soil N transformations, which are laborious to measure in the field, have the potential to be estimated from a combination of monthly average soil temperatures and N transformation parameters, which are relatively straightforward to obtain through laboratory incubation.  相似文献   

3.
A closed-system flow-through enclosure apparatus was used tomeasure symbiotic nitrogen fixation directly. A legume-basedsystem comprising 6-week-old Trifolium repens L. (white clovercv. Blanca) growing with Lolium perenne L. (perennial ryegrasscv. Trani) in an agricultural soil was incubated for 19 d ina 15N-enriched atmosphere (mean value 3.663 atom%). An actinorhizal-basedsystem comprising 1 -year-old Alnus glutinosa L. (alder) saplingsgrowing with Festuca rubra L. (red fescue) in open-cast coalspoil was incubated for 21 d in a 15N-enriched atmosphere (meanvalue 3.265 atom%). Indirect estimates of N2 fixation were carriedout concurrently using N difference and 15N isotope dilutiontechniques. The theory underlying the three techniques and modificationswhich were adopted for comparative purposes are discussed. Thedirect measurements of N2 fixation were then compared with theindirect estimates using Pinc, the proportion of the N incrementduring the measurement period that was derived from fixation.The simple N difference method gave similar values for Pinc(0.94 and 0.97) as those derived from more complicated isotopemethodologies, both indirect (0.91) and direct (0.90). Valuesfor alder were far more variable, ranging from 0.16 to 0.92;this was due largely to variability within the trees and a verysmall N increment during the measurement period. Key words: N2 fixation, 15N2, white clover, alder, enclosure apparatus  相似文献   

4.
本研究分析添加不同种硝化抑制剂及其组合的高效稳定性氯化铵氮肥对红壤硝化作用、玉米产量和氮肥利用率的影响,旨在筛选出适合酸性红壤的高效稳定性氯化铵态氮肥。在氯化铵中分别添加硝化抑制剂2-氯-6-三甲基吡啶(CP)、3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)及其组合,制成6种高效稳定性氯化铵态氮肥,以不施氮肥(CK)和施氯化铵(N)为对照,进行等氮量玉米盆栽试验。结果表明: 与N处理相比,CP+DMPP和DMPP+DCD处理红壤中铵态氮含量提高56%~62%,显著高于CP、DMPP和DCD处理;土壤表观硝化率显著降低33%~34%。添加硝化抑制剂及其组合的6个处理均显著提高了玉米生物量和氮肥吸收利用率。与N处理相比,单独添加硝化抑制剂处理生物量均显著高于硝化抑制剂组合处理,平均提高1.3倍;添加DCD处理效果最显著,玉米籽粒产量、吸氮量和氮肥吸收利用率分别显著提高4.1、6.3和4.4倍。为了达到既能低成本又能提高产量和氮肥利用率的效果,在红壤上添加硝化抑制剂DCD是最佳选择。  相似文献   

5.
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with 15N-labeled ammonium, CO2 dark fixation measurements and quantification of AOA by catalyzed reporter deposition–fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122–884 nmol l−1per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5–6.9 × 105 cells per ml) and CO2 fixation elevated. In the presence of the archaeal-specific inhibitor GC7, nitrification was reduced by 86–100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps.  相似文献   

6.
Particle-grazing copepods, primarily Temora longicornis andT. stylifera, and seawater with natural particles were collectedfrom the northwest Gulf of Mexico. Control and ammonium-enrichedaliquots of seawater were incubated in triplicate for 2 days,copepods added and the incubation continued for 2 days. Analyseswere made of dissolved nutrients (nitrate, ammonium and phosphate),suspended particles (chlorophyll a and phaeopigments, C, N,  相似文献   

7.
Trichodesmium spp. have proved to be enigmatic organisms, and their ecology and physiology are unusual among diazotrophs. Recent research shows that they can simultaneously fix N2 and take up combined nitrogen. The co-occurrence of these two processes is thought to be incompatible, but they could be obligatory in Trichodesmium spp. if only a small fraction of cells within a colony or along a filament are capable of N2 fixation. Combined nitrogen is released from cells during periods of active growth and N2 fixation, and concomitantly taken up by Trichodesmium spp. or cells living in association with colonies. Although the nitrogenase of Trichodesmium spp. is affected by high concentrations of combined nitrogen, it might be relatively less sensitive to low concentrations of combined nitrogen typical of the oligotrophic ocean and culture conditions. Nitrogenase activity and synthesis exhibits an endogenous rhythm in Trichodesmium spp. cultures, which is affected by the addition of nitrogen.  相似文献   

8.
9.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

10.
The automated Dumas technique described by Barsdate and Dugdale for quantitative determination of total organic nitrogen and isotope enrichment in marine phytoplankton has been refined. The method involves manometric and mass spectrometric measurements for total nitrogen and nitrogen isotopes, respectively. Expressions for calculating isotope enrichment have been derived and include temperature, background, and ion pump corrections. The latter can be a major source of error in atom-percent enrichment calculations when ion pumps are used to maintain very low background pressures in the analyzer chamber. When such systems are adopted for 15N tracer analysis, calibration curves should be established prior to analysis to assess the level of interference.  相似文献   

11.
The soils of mid-Wales in grazed permanent pasture usually exhibit stagnogley features in the top 4–10 cm even though on sloping sites, they are freely drained. Nitrogen is often poorly recovered under these conditions. Our previous studies suggest that continuing loss of available N through concurrent nitrification and denitrification might provide an explanation for poor response to fertilizer N. The work described was designated to further test this proposition. When NH 4 + –N was applied to the surface of intact cores, equilibrated at –5kPa matric potential, about 70% of NH 4 + –N initially present was lost within 56 days of incubation. Study of different sections of the cores showed a rise in NO 3 - level in the surface 0–2.5 cm soil layer but no significant changes below this depth. The imbalance between NO 3 - accumulation and NH 4 + disappearance during the study indicated a simultaneous nitrification and denitrification in the system. Furthermore, the denitrification potential of the soil was 3–4 times greater than nitrification potential so no major build-up of NO 3 - would be expected when two processes occur simultaneously in micro-scale. When nitrification was inhibited by nitrapyrin, a substantial amount of NH 4 + –N remained in the soil and persisted till the end of the incubation. The apparent recovery of applied N increased and of the total amount of N applied, 50% more was recovered relative to without nitrapyrin. It appears that addition of nitrapyrin inhibited nitrification, and consequently denitrification, by limiting the supply of NO 3 - for denitrifying organisms. Emission of N2O from the NH 4 + amended soil cores further confirmed that loss of applied N was the result of both nitrification and denitrification, which occurred simultaneously in adjacent sites at shallow depths. This N loss could account for the poor response to fertilizer N often observed in pastoral agriculture in western areas of the UK.  相似文献   

12.
1. The principle of radioisotope dilution was applied on a semi-micro scale to the determination of glucosamine and galactosamine in some glycoproteins, such as immunoglobulins, a urinary glycoprotein and blood-group-specific substances. 2. The glycoprotein was hydrolysed in the presence of [1-(14)C]glucosamine or [1-(14)C]galactosamine or both. The amino sugars were made to react with naphthyl isothiocyanate and the products formed were isolated by the method of Scott (1962). The specific radioactivities determined from liquid-scintillation counting and the extinction at 240mmu or 222mmu were used to calculate the content of amino sugars in the protein analysed. 3. Where the values could be compared with those found by other workers, differences were in general not very great. The advantages of the method are that high concentrations of acid can be employed and undesirable side reactions, which may occur with the free sugars, do not affect the results. A potential source of error of the method is discussed.  相似文献   

13.
Field studies indicate that natural phytoplankton populations may release very significant amounts (20 to 40%) of newly assimilated dissolved inorganic nitrogen (DIN) as dissolved organic nitrogen (DON). In laboratory cultures, however, it is usually possible to account for at least 90% of nitrogen added to the system as DIN plus cell nitrogen. Here we show that the bulk of the missing nitrogen may be accounted for as dissolved free and dissolved combined amino acids. In cultures (which usually have a biomass density at least an order of magnitude greater than is present in offshore waters), the contribution of DON to system nitrogen thus appears to be minor. It is proposed that this difference may be explained if the levels of DON represent equilibrium between release–leakage and transport back into the algae. It is demonstrated, using a dynamic model of algal nitrogen physiology, that this mechanism can explain both laboratory and field observations. Simulations of incubations with DI15N reproduce the reported levels of loss in field incubations. However, because of isotope disequilibria between system components the 15N protocol may significantly overestimate the net loss of nitrogen from the algal cells. The arguments apply equally to studies of bacterial production of DON and to questions concerning the release of other dissolved organics by healthy phytoplankton. The significance of dynamic equilibria between the organisms and the medium may be missed in laboratory studies conducted with high biomass cultures.  相似文献   

14.
海岸带地区的固氮、氨化、硝化与反硝化特征   总被引:9,自引:2,他引:9  
徐继荣  王友绍  孙松 《生态学报》2004,24(12):2907-2914
海岸带是海洋环境中受人类活动影响最大、生物地球化学循环最为活跃的地区。这一地区氮的生物地球化学循环包括 :生物固氮、有机氮的氨化、氮的硝化、反硝化等 4个主要过程。概括性地介绍了有关这四个过程的发生机制、环境影响因素及研究方法等方面的研究动态、进展、存在的科学问题与今后的研究方向。过去十几年来 ,固氮主要集中在对束毛藻属的研究上 ,其间有两个重要发现 ,一是生物固氮在海洋氮循环中的作用远比人们以前的想象要重要得多 ;二是蓝细菌已经在海洋中存在了 2 0亿年 ,它们有可能调节大气中的 CO2 ,进而影响全球气候。由于有机物的结构千差万别 ,含氮有机物的氨化过程可能是一个简单的矿化反应 ,也有可能是一系列复杂的代谢过程 ,在水解酶的作用下含氮有机物降解为下一级化合物。硝化过程分两步进行 ,氨的硝化为反硝化细菌提供了重要的硝酸盐来源 ,通常采用同位素方法来研究硝化过程。发生在沉积物中的反硝化过程是氮循环的关键步骤 ,反硝化过程一方面减少了海水中初级生产者可利用的氮 ,另一方面产生了终结产物 N2 和 N2 O,而 N2 O是一种温室气体 ,可能影响全球气候变化  相似文献   

15.
A technique for measuring net rates of mineralization under field conditions is described. Soil cores were incubated in the field in sealed containers with acetylene to inhibit nitrification and thereby minimize losses of N through denitrification. Mineralization was estimated as the difference between the mineral N content after a 14-d incubation and that determined from soil samples taken at the start of incubation. Mineralization in the spring and summer in unfertilized plots in the field amounted to 90 and 70 kg N ha−1 in S.E. England under grass and grass/clover swards, respectively, and 40 kg N ha−1 under a grass sward in S.W. England. Daily rates of mineralization ranged from 0.02 to 1.90 kg N ha−1, with peak values related to re-wetting of the soil after dry weather. Laboratory incubation of soil showed that neither the low concentration of acetylene (2% v/v) adopted for field incubation, nor the accumulation of mineral N during incubation was likely to affect the total measurement, but that frequent and regular soil sampling was necessary to minimize the effects of changes in soil water content. Estimates for mineralization over the whole growing season (180 d) were obtained for two years from extrapolation of the early season field measurements and were, on average, 50% higher than predictions based on a chemical extraction index of potentially mineralizable N.  相似文献   

16.
Summary A few principles relative to the presentation and use of nitrogen stable isotopic data are briefly reviewed. Some classical relationships between the isotope composition of a substrate undergoing a single-step unidirectional reaction, are introduced. They are illustrated through controlled experiments on denitrification in a soil, and through nitrification by pure cultures ofNitrosomonas europaea. In the latter case, the isotope fractionation is calculated from the isotopic composition of the residual substrate, then of the product and the result is shown to be statistically the same for the two procedures. The isotopic enrichment factor for denitrification is −29.4±2.4‰ at 20°C, and −24.6±0.9‰ at 30°C; for nitrification this factor is −34.7±2.5‰ under the experimental conditions employed.  相似文献   

17.
18.
Nitrogen fixation by field-grown soybean (Glycine max [L.] Merrill) was assessed by the natural 15N abundance and ureide methods. The field sites (five) and genotypes (six, plus two levels of inoculation on Bragg) were chosen to provide a range of proportions of plant N derived from nitrogen fixation (P). Genotypes K466, K468, nts1007, and nts1116 and Davis were included on the basis of their reported tolerance of the suppressive effects of nitrate on nodulation and nitrogen fixation. Bragg was included as a `nitrate-sensitive' genotype. Seeds of all genotypes were inoculated at sowing with Bradyrhizobium japonicum CB1809 (USDA136). Amounts of nitrate in the soil profile (0-1.2 meter depth) at sowing ranged from 70 (site 3) to 278 kilograms per hectare (site 5), resulting in large effects on plant nodulation, on the δ15N values of nodulated plants, on the relative abundance of ureide-N in vacuum-extracted sap (VES) and stem extracts, and finally on the estimates of P. There was no relationship between amount of soil nitrate at sowing and the δ15N of the plant-available soil N. Correlation matrices of the measured and calculated parameters indicated generally weak correlations between crop growth (dry matter and N) and the parameters of symbiotic activity (nodule weight, δ15N, relative ureide-N); correlations were strong and highly significant between nodulation and the measures of nitrogen fixation (δ15N, relative ureide-N; r = 0.79-0.92). Estimates of P ranged between 0 and 68% (δ15N) and between 6 and 56% (ureide) and were highly correlated (r = 0.97). Results indicated that the ureide method can be used with confidence to assess P by field-grown crops of soybean.  相似文献   

19.
Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated.  相似文献   

20.
Sandy clay loam soil was contaminated with 5000 mg kg−1 diesel, and amended with nitrogen (15.98 atom% 15N) at 0, 250, 500, and 1000 mg kg−1 to determine gross rates of nitrogen transformations during diesel biodegradation at varying soil water potentials. The observed water potential values were −0.20, −0.47, −0.85, and −1.50 MPa in the 0, 250, 500, and 1000 mg kg−1 nitrogen treatments respectively. Highest microbial respiration occurred in the lowest nitrogen treatment suggesting an inhibitory osmotic effect from higher rates of nitrogen application. Microbial respiration rates of 185, 169, 131, and 116 mg O2 kg−1 soil day−1 were observed in the 250, 500, control and 1000 mg kg−1 nitrogen treatments, respectively. Gross nitrification was inversely related to water potential with rates of 0.2, 0.04, and 0.004 mg N kg−1 soil day−1 in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. Reduction in water potential did not inhibit gross nitrogen immobilization or mineralization, with respective immobilization rates of 2.2, 1.8, and 1.8 mg N kg−1 soil day−1, and mineralization rates of 0.5, 0.3, and 0.3 mg N kg−1 soil day−1 in the 1000, 500, and 250 mg kg−1 nitrogen treatments, respectively. Based on nitrogen transformation rates, the duration of fertilizer contribution to the inorganic nitrogen pool was estimated at 0.9, 1.9, and 3.2 years in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. The estimation was conservative as ammonium fixation, gross nitrogen immobilization, and nitrification were considered losses of fertilizer with only gross mineralization of organic nitrogen contributing to the most active portion of the nitrogen pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号