首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellobiase (β-glucosidase) production was compared for two streptomycetes: Streptomyces flavogriseus, a known producer of cellulase complex, and Streptomyces sp. strain CB-12, a strain isolated for its rapid growth on cellobiose. The optimal conditions for enzyme activity were established in relation to pH, temperature, enzyme stability, and substrate affinity. The production of β-glucosidase by the two strains depended on the carbon substrate in the medium. Cellobiose was found to repress the biosynthesis of the enzyme in S. flavogriseus and to stimulate its production in strain CB-12. The biosynthesis of the enzyme correlated well with the accumulation of glucose in the culture filtrates. The combined action of the β-glucosidases produced by the two Streptomyces strains might allow a better utilization of the reaction products which arise during the biodegradation of cellulose.  相似文献   

2.
Streptomyces flavogriseus CMCase and Avicelase were very stable at 30 degrees C but not at 40 degrees C or higher. beta-Glucosidase was less stable at all temperatures tested. Stabilities were similar at pH values between 5.5 and 7, the optimal range for enzyme activity. Cellulose solubilizing activity was reduced by 40% at a cellobiose concentration of 150mM but glucose inhibited activity by only 10% at this concentration. beta-Glucosidase was inhibited by 40% at a glucose concentration of 10mM (ten times the substrate concentration). Relatively dilute S. flavogriseus cellulase extensively hydrolysed acid-swollen cellulose at concentrations as high as 10%. More highly crystalline forms of cellulose were more resistant to attack.  相似文献   

3.
AIMS: The beta-glucosidase activity is involved in the hydrolysis of several important compounds for the development of varietal wine flavour. The aim of the present study was to investigate the production of beta-glucosidase in a number of wine-related yeast strains and to measure and identify this activity over the course of grape juice fermentation. METHODS AND RESULTS: beta-glucosidase activity was measured as the amount of 4-methylumbelliferone released from 4-methylumbelliferyl-beta-d-glucopyranoside substrate. Intact cells of some grape and wine-spoilage yeasts showed beta-glucosidase activity much higher than those observed in wine yeasts "sensu stricto". During fermentation, three Saccharomyces cerevisiae strains, one Hanseniaspora valbyensis strain and one Brettanomyces anomalus strain showed beta-glucosidase activity both intra- and extracellularly. CONCLUSIONS: In the studied strains, beta-glucosidase activity was at its maximum when the cells were in the active growth phase. However, a lowering of medium pH to values around 3 during fermentation led to total loss of activity. SIGNIFICANCE AND IMPACT OF THE STUDY: During the course of this study, a new, rapid and reproducible method to assay beta-glucosidase activity was developed. The fact that Saccharomyces and non-Saccharomyces yeast strains are able to express beta-glucosidase activity during the alcoholic fermentation sheds new light on the contribution of these yeasts in the aroma expression of wines.  相似文献   

4.
Extracellular enzyme preparations from Streptomyces flavogriseus and Streptomyces olivochromogenes cultures grown on cellulose contained primarily cellulase activities, but similar preparations from cultures grown on xylan-containing materials possessed high levels of both cellulase and xylanase activities. Growth conditions that gave high endoxylanase levels also resulted in the production of enzymes involved in the hydrolysis of the nonxylose components of xylan. Specific acetyl xylan esterase activities were identified in enzyme preparations from both organisms. Both organisms also produced alpha-l-arabinofuranosidase activity that was not associated with endoxylanase activity. Other activities produced were alpha-l-O-methylglucuronidase and ferulic acid esterase. The latter enzyme was produced only by S. olivochromogenes and is an activity which has not previously been identified as a component of hemicellulase preparations.  相似文献   

5.
Examination was made on the morphological and cultural characteristics of the lutease-producing Streptomyces strain No. OP-4-5 isolated from a dust. The strain was identified as Streptomyces griseus. In addition, it was proved that 2 strains of Streptomyces griseus produce lutease in a test for lutease production in Streptomyces species. Streptomyces parvus and Streptomyces niveoruber also produce the same enzyme. However, production of the lutease by these 4 strains was less than that of produced by Streptomyces griseus strain No. OP-4-5 which was isolated by the authors.  相似文献   

6.
Streptomyces flavogriseus, a mesophilic actinomycete, produces high levels of extracellular enzymes capable of hydrolyzing cellulose and xylan. One such enzyme, an exoglucanase, has been purified to molecular homogeneity by a sequence involving DEAE Bio-Gel A chromatography, gel permeation chromatography on Bio-Gel P-60, preparative isoelectric focusing, and concanavalin A affinity chromatography. This purification sequence disclosed the presence of several distinct endoglucanase and xylanase fractions. Homogeneity of the purified enzyme was demonstrated by analytical isoelectric focusing and sodium dodecyl sulphate--polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of approximately 45 000 and an isoelectric point of 4.15. The enzyme demonstrated negligible activity with carboxymethylcellulose as the substrate. It was able to extensively hydrolyse acid-swollen cellulose; the main product of enzyme action was cellobiose.  相似文献   

7.
We cloned the genomic DNA and cDNA of bglA, which encodes beta-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound beta-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound beta-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal beta-glucosidases classified in subfamily B. We expressed the bglA cDNA in Saccharomyces cerevisiae and detected the recombinant beta-glucosidase in the periplasm fraction of the recombinant yeast. A. kawachii can produce two extracellular beta-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound beta-glucosidase. A. kawachii in which the bglA gene was disrupted produced none of the three beta-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that the bglA gene encodes both extracellular and cell wall-bound beta-glucosidases in A. kawachii.  相似文献   

8.
In silico database searches allowed the identification in the S. flavogriseus ATCC 33331 genome of a carbapenem gene cluster highly related to the S. cattleya thienamycin one. This is the second cluster found for a complex highly substituted carbapenem. Comparative analysis revealed that both gene clusters display a high degree of synteny in gene organization and in protein conservation. Although the cluster appears to be silent under our laboratory conditions, the putative metabolic product was predicted from bioinformatics analyses using sequence comparison tools. These data, together with previous reports concerning epithienamycins production by S. flavogriseus strains, suggest that the cluster metabolic product might be a thienamycin-like carbapenem, possibly the epimeric epithienamycin. This finding might help in understanding the biosynthetic pathway to thienamycin and other highly substituted carbapenems. It also provides another example of genome mining in Streptomyces sequenced genomes as a powerful approach for novel antibiotic discovery.  相似文献   

9.
beta-Glucosidase from Saccharomyces lactis strains Y-123 (B(h)), Y-14 (B(m)), and Y-1057A (B(1)) was partially purified. The pH optima, Michaelis constants, and activation energies were determined for the hydrolysis of p-nitro-phenyl-beta-d-glucoside by each of the enzymes. Differences among these constants were not enough to account for the low specific activity of beta-glucosidase in strains Y-14 and Y-1057A. Enzyme-inhibitor constants were measured for a series of alkyl and aryl glucosides. In general, the three enzymes are arylglucosidases. Tris(hydroxymethyl)-aminomethane inhibited all three enzymes in an uncompetitive fashion. The inhibition was antagonized by Mg(++). An antiserum was prepared to the highly purified (200-fold) beta-glucosidase from strain Y-123. The nature and degree of cross-reaction between the three beta-glucosidases was investigated by double diffusion in agar and neutralization tests. Spur formation in the immunodiffusion tests and similar equivalence points in the neutralization tests indicated a strong degree of cross-reaction between the three enzymes. The ratio of enzyme activity to antigenicity was used to compare the relative molecular activity of beta-glucosidase in the three strains. Each strain produced the same amount of beta-glucosidase per milligram of cell protein. The results are consistent either with a lower turnover number for the beta-glucosidase in strains Y-14 and Y-1057A or with the production of beta-glucosidase with a "normal" turnover number and enough cross-reacting material to effectively reduce the specific activity to the observed levels.  相似文献   

10.
The present study was focused on screening and characterization of tyrosinase enzyme produced by marine actinobacteria and its application in phenolic compounds removal from aqueous solution. A total of 20 strains were isolated from marine sediment sample and screened for tyrosinase production by using skimmed milk agar medium. Among 20 isolates, two isolates LK-4 and LK-20 showed zone of hydrolysis and these were taken for secondary screening by using tyrosiue agar medium. Based on the result of secondary screening LK-4 was selected for further analysis, such as tyrosinase assay, protein content and specific activity of the enzyme. The tyrosinase enzyme was produced in a SS medium and was partially purified by ammonium sulfate precipitation, dialysis and SDS PAGE. The isolate (LK-4) was identified as Streptomyces espinosus using 16S rRNA gene sequencing and named as "Streptomyces espinosus strain LK4 (KF806735)". The tyrosinase enzyme was immobilized in sodium alginate which was applied to remove phenolic compounds from water. The enzyme efficiently removed the phenolic compounds from aqueous solution within few hours which indicated that tyrosinasc enzyme produced by Streptomyces espinosus strain LK-4 can be potently used for the removal of phenol and phenolic compounds from wastewater in industries.  相似文献   

11.
Two different strains of Trichoderma pseudokoningii (SE1 A8 and SE1 D81) and Trichoderma viride QM 9123 release into the medium different proportions of the total beta-glucosidase activity produced. This observation correlates with the degree of beta-1,3-glucanase binding to the cell wall found for each strain. DEAE-Sephadex ion-exchange chromatography revealed three peaks of beta-1,3-glucanase activity. These three enzymes (enzyme I, enzyme II, and enzyme III) differ in their extent of binding to the cell walls, their activity on isolated cell walls and Trichoderma beta-glucan, and their affinity for beta-glucan. Of these enzymes, enzyme II shows the largest variation in relative importance among the three strains and is located predominantly within the mural compartment. Enzyme II has the highest activity on and affinity for Trichoderma beta-glucan. Enzyme II is also the most active in releasing beta-glucosidase from cell walls of strain SE1 A8 (the strain excreting a high proportion of its beta-glucosidase into the culture fluid) as well as from strain SE1 D81 (little beta-glucosidase activity in the culture fluid). It is concluded that the action of beta-1,3-glucanase II on cell wall beta-glucan may be responsible for the in vivo release of cell wall bound beta-glucosidase into the culture fluid.  相似文献   

12.
Alkaline cellulase-producing actinomycete strains were isolated from mud samples collected from East African soda lakes. The strains were identified as novel Streptomyces spp. by 16S rDNA sequence analysis. A cellulase gene (cel12A) from Streptomyces sp. strain 11AG8 was cloned by expression screening of a genomic DNA library in Escherichia coli. From the nucleotide sequence of a 1.5-kb DNA fragment, an open reading frame of 1,113 nucleotides was identified encoding a protein of 371 amino acids. From computer analysis of the sequence, it was deduced that the Cel12A mature enzyme is a protein of 340 amino acids. The protein contained a catalytic domain, a glycine-rich linker region, and a cellulose-binding domain of 221, 12, and 107 amino acids, respectively. FASTA analysis of the catalytic domain of Cel12A classified the enzyme as a family 12 endoglucanase and the cellulose-binding domain as a family IIa CBD. Streptomyces rochei EglS was determined as nearest neighbor with a similarity of 75.2% and 61.0% to the catalytic domain and the cellulose-binding domain, respectively. The cell2A gene was subcloned in a Bacillus high-expression vector carrying the Bacillus amyloliquefaciens amylase regulatory sequences, and the construct was transformed to a Bacillus subtilis host strain. Crude enzyme preparations were obtained by ultrafiltration of cultures of the Bacillus subtilis recombinant strain containing the 11AG8 cell2A gene. The enzyme showed carboxymethylcellulase (CMCase) activities over a broad pH range (5-10) with an optimum activity at pH 8 and 50 degrees C. The enzyme retained more than 95% of its activity after incubation for 30 min under these conditions.  相似文献   

13.
Cationic detergent (cetyltrimethylammonium bromide or cetylpyridinium chloride) treatment extracted almost the same amount of glucose isomerase from cells of Streptomyces flavogriseus as mechanical disruption (sonic oscillation or abrasive grinding). The specific activity of the enzyme extracted with cationic detergents was approximately 20% higher than that liberated by mechanical disruption.  相似文献   

14.
Extraction of glucose isomerase from Streptomyces flavogriseus.   总被引:1,自引:1,他引:0       下载免费PDF全文
Cationic detergent (cetyltrimethylammonium bromide or cetylpyridinium chloride) treatment extracted almost the same amount of glucose isomerase from cells of Streptomyces flavogriseus as mechanical disruption (sonic oscillation or abrasive grinding). The specific activity of the enzyme extracted with cationic detergents was approximately 20% higher than that liberated by mechanical disruption.  相似文献   

15.
The xylanase gene of Streptomyces flavogriseus was cloned in pUC8 plasmid and expressed in Escherichia coli lysogenic for lambda cI857. lambda-Induced lysis of E. coli at 42 degrees C allowed efficient release of cloned enzyme activity in extracellular environment. The xylanase gene was located in the 0.8-kb HindIII fragment and coded for 18,000 Mr xylanase.  相似文献   

16.
DNA reassociation was used to determine levels of relatedness among four thermophilic Methanobacterium strains that are able to use formate and between these organisms and two representative strains of Methanobacterium thermoautotrophicum, strain delta HT (= DSM 1053T = ATCC 29096T) (T = type strain) and strain Marburg (= DSM 2133). Three homology groups were delineated, and these groups coincided with the clusters identified by antigenic fingerprinting. The first group, which had levels of cross hybridization that ranged from 73 to 99%, included M. thermoautotrophicum delta HT, Methanobacterium thermoformicicum Z-245, Methanobacterium sp. strain THF, and Methanobacterium sp. strain FTF. The second and third groups were each represented by only one strain, Methanobacterium sp. strain CB-12 and M. thermoautotrophicum Marburg, respectively (cross-hybridization levels, 13 to 30 and 29 to 33%, respectively). Our results indicate that the name M. thermoformicicum should be rejected as it is a synonym of M. thermoautotrophicum. The taxonomic positions of strains Marburg and CB-12 need further investigation.  相似文献   

17.
Several poliovirus and coxsackievirus isolates from environmental sources were compared with laboratory strains to determine their rate of inactivation by chlorine. All viruses were tested for up to 1,000 min in the presence of an initial free residual chlorine level of ca. 0.4 mg/liter. Coxsackievirus B5 (CB-5) isolates were found to be more resistant to chlorine than coxsackievirus B4 (CB-4), followed by poliovirus 1, 2, and 3 in order of decreasing resistance to chlorine. Environmental isolates of CB-5 were more resistant than the laboratory strain tested, and for two strains 12 and 22% of the input virus was still infectious after 100 min in the presence of free residual chlorine. Although CB-4 isolates were less resistant to chlorine than CB-5 isolates, after 1,000 min of contact 0.01% of the input virus was still infectious. Except for CB-5 isolates, isolates from environmental sources did not appear to be more resistant to chlorine than laboratory strains. Viruses isolated at different phases during the preparation of drinking water were not more resistant to chlorine and must thus have been protected by other mechanisms.  相似文献   

18.
The germination rate and activation conditions of spores were examined for four strains of Streptomyces sp., a phytopathogen causing root tumor of melon. An inhibitor was isolated from the agar-cultured material of strain CB-1-1 and then characterized. The inhibitor selectively acted on spore germination and did not affect hyphal growth, and inhibition was abolished by washing the spores in water. The inhibitor was produced by an agar culture, and most of the inhibitor existed in the spores. The IC(50) value for the inhibitor was approximately 0.25 microg/ml.  相似文献   

19.
beta-Glucosidase activity was induced in Streptomyces venezuelae during growth on cellobiose, gentiobiose, salicin, methyl beta-glucoside, and p-nitrophenyl beta-D-glucopyranoside. Activity in cell extracts was separated by DEAE-cellulose chromatography into two fractions differing in substrate preference. One component showed higher activity with, and was more strongly induced by, cellobiose; the other showed greater activity and inducibility with salicin. Addition of glucose to cultures severely depressed induction of beta-glucosidase activity by cellobiose but not by salicin. Acetate and several amino acids inhibited induction by either substrate. The action of glucose was not reversed by cyclic AMP. Cultures of S. venezuelae using glucose, cellobiose, or a mixture of the two saccharides as their carbon source produced chloramphenicol during growth. In contrast with its effect on the induction of cellobiose activity, glucose did not suppress chloramphenicol production, indicating that the control mechanisms that establish carbon source preferences are not linked to those that regulate antibiotic biosynthesis in this organism.  相似文献   

20.
Ascomycin (FK520) is a structurally complex macrolide with immunosuppressant activity produced by Streptomyces hygroscopicus. The biosynthetic origin of C12-C15 and the two methoxy groups at C13 and C15 has been unclear. It was previously shown that acetate is not incorporated into C12-C15 of the macrolactone ring. Here, the acyl transferase (AT) of domain 8 in the ascomycin polyketide synthase was replaced with heterologous ATs by double homologous recombination. When AT8 was replaced with methylmalonyl-CoA-specific AT domains, the strains produced 13-methyl-13-desmethoxyascomycin, whereas when AT8 was replaced with a malonyl-specific domain, the strains produced 13-desmethoxyascomycin. These data show that ascomycin AT8 does not use malonyl- or methylmalonyl-CoA as a substrate in its native context. Therefore, AT8 must be specific for a substrate bearing oxygen on the alpha carbon. Feeding experiments showed that [(13)C]glycerol is incorporated into C12-C15 of ascomycin, indicating that both modules 7 and 8 of the polyketide synthase use an extender unit that can be derived from glycerol. When AT6 of the 6-deoxyerythronolide B synthase gene was replaced with ascomycin AT8 and the engineered gene was expressed in Streptomyces lividans, the strain produced 6-deoxyerythronolide B and 2-demethyl-6-deoxyerythronolide B. Therefore, although neither malonyl-CoA nor methylmalonyl-CoA is a substrate for ascomycin AT8 in its native context, both are substrates in the foreign context of the 6-deoxyerythronolide B synthase. Thus, we have demonstrated a new specificity for an AT domain in the ascomycin polyketide synthase and present evidence that specificity can be affected by context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号