首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the determination of the net and total rates of NH4+ production and NH4+ incorporation at different depths in an anoxic marine sediment. 15N-NH4+ was added to the sediment NH4+ pool, and the 15N content was assayed after 0, 2, and 5 days of incubation. The pool size changed during incubation; this change in pool size is incorporated into a model which predicts the dynamics of 15N-NH4+ dilution. A simple microdiffusion of NH3 was followed by an emission spectrometry analysis of 15N content. This procedure avoided all problems of cross-contamination. The model was tested and rates were measured in four sediment cores, at seven different depths. The high correlation coefficients (mean, 0.96 for the 0- to 2-, 2- to 4-, 4- to 6-, and 6- to 8-cm sediment fractions) indicated that the model was correct and that the measured rates were valid. The immediate distribution of 15N-NH4+ between interstitial and exchangeable NH4+ pools indicated that it was the combined pool that was turning over. In the 0- to 2-cm fraction at 17°C the net rate of NH4+ production was 274 (standard deviation, 31) nmol cm−3 day−1, and the mean total rate of NH4+ production was 309 (standard deviation, 39) nmol cm−3 day−1; both rates decreased to <1% of these values in the 12- to 14-cm fractions.  相似文献   

2.
Plant-atmosphere NH(3) exchange was studied in white clover (Trifolium repens L. cv. Seminole) growing in nutrient solution containing 0 (N(2) based), 0.5 (low N) or 4.5 (high N) mM NO(3)(-). The aim was to show whether the NH(3) exchange potential is influenced by the proportion of N(2) fixation relative to NO(3)(-) supply. During the treatment, inhibition of N(2) fixation by NO(3)(-) was followed by in situ determination of total nitrogenase activity (TNA), and stomatal NH(3) compensation points (chi(NH(3))) were calculated on the basis of apoplastic NH4(+) concentration ([NH4(+)]) and pH. Whole-plant NH(3) exchange, transpiration and net CO(2) exchange were continuously recorded with a controlled cuvette system. Although shoot total N concentration increased with the level of mineral N application, tissue and apoplastic [NH4(+)] as well as chi(NH(3)) were equal in the three treatments. In NH(3)-free air, net NH(3) emission rates of <1 nmol m(-2) s(-1) were observed in both high-N and N(2)-based plants. When plants were supplied with air containing 40 nmol mol(-1) NH(3), the resulting net NH(3) uptake was higher in plants which acquired N exclusively from symbiotic N(2) fixation, compared to NO(3)(-) grown plants. The results indicate that symbiotic N(2) fixation and mineral N acquisition in white clover are balanced with respect to the NH4(+) pool leading to equal chi(NH(3)) in plants growing with or without NO(3)(-). At atmospheric NH(3) concentrations exceeding chi(NH(3)), the NH(3) uptake rate is controlled by the N demand of the plants.  相似文献   

3.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol . g of dry sediment . h by 10 to 20 h. Depletion of interstitial NH(4) was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C(2)H(4) . g of dry sediment . h. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C(2)H(4) production. Initial values obtained by using the perfusion method were 0.66 nmol of C(2)H(4) . g of dry sediment . h for sediments from Zostera communities and 0.70 nmol of C(2)H(4) . g of dry sediment . h for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

4.
Anaerobic lake sediment incubated in vitro was investigated for its ability to mimic natural in situ sediment activities, using rate of methane production for the comparison. Two lakes with different rates and seasonal patterns of methanogenic activity were compared. There was good agreement (at the 97.5% confidence level) between rates of in situ methane release and initial (lasting an average of 120 h) rates of production measured in vitro in surface (0- to 3-cm) sediment. Evidence from this study, and others, indicated that it is the in situ surface sediment methane production which is primarily responsible for maintaining in situ methane release, and thus the above agreement was what was expected if surface in situ activity was maintained in vitro. When deeper sediment was investigated, however, the sum of in vitro rates from 0 to 20 cm (measured in 1.5- to 3-cm intervals) was much higher than in situ release rates and would have resulted in an impossibly high volume of gas. The extra gas could not have been stored within the sediments. We conclude that the in situ methanogenic activity of the 0- to 3-cm anaerobic surface sediments could be preserved during removal and laboratory incubation. However, similar treatment of deeper sediment appeared to stimulate methanogenic activity.  相似文献   

5.
The relation between net dimethyl sulfide (DMS) production and changes in near surface (0-5 mm) oxygen concentrations in a sea grass (Zostera noltii Hornem)-covered intertidal sediment ecosystem was examined during a diel cycle. Sediment covered with Zostera was found to be more oxygenated than uncovered sediment during the period of photosynthesis. This phenomenon was probably caused by radial oxygen loss of the Zostera root-rhizome system. The population sizes of the three functional groups of microbes mainly responsible for the concentration of DMS, the dimethylsulfoniopropionate (DMSP)-demethylating, DMSP-cleaving and DMS-oxidizing bacteria, were quantified by most probable number (MPN) methodologies. Sediments with Zostera supported substantially higher populations of both aerobic (149x10(6) cm(-3) DMSP-utilizing and 0.4x10(6) cm(-3) DMS-oxidizing) and anaerobic (43x10(6) cm(-3) DMSP-utilizing and 0.4x10(6) cm(-3) DMS-oxidizing) microorganisms than sediments without Zostera (DMSP-utilizing aerobes and anaerobes both 2x10(6) cm(-3) and DMS-oxidizing aerobes and anaerobes both 0.2x10(6) cm(-3)). Experiments conducted with sediment cores and sediment slurries suggested that the net production of DMS in these sediments was significantly lower during oxic periods than during anoxic periods. Intact sediment cores with and without Zostera produced DMS when incubated under anoxic/dark conditions (97.0 and 53.6 nmol DMS m(-2) h(-1), respectively), while oxic/light-incubated cores did not produce detectable amounts of DMS. In addition, kinetic parameter values (V(max) and K(m)) for DMSP degradation in cell suspensions of isolated DMSP-demethylating and DMSP-cleaving bacteria were measured and compared to documented values for other strains. Both V(max) and K(m) values for DMSP-demethylating organisms were found to be relatively low (14.4-20.1 nmol DMSP mg protein(-1) min(-1) and 4.1-15.5 μM, respectively) while these parameter values varied widely in the group of the DMSP-cleaving organisms (6.7-1000 nmol DMSP mg protein(-1) min(-1) and 2-2000 μM, respectively). It was hypothesized that a diel rhythm in DMS emission occurred, with a relatively low net production during the day and a high net production during the night. Environmental changes which result in increased anoxic conditions in coastal sediments, such as an increase in eutrophication, may therefore result in increased atmospheric DMS emission rates.  相似文献   

6.
Although cooxidative biodegradation of monohalogenated hydrocarbons has been well studied in the model NH3-oxidizing bacterium, Nitrosomonas europaea, virtually no information exists about cooxidation of these compounds by native populations of NH3-oxidizing bacteria. To address this subject, nitrifying activity was stimulated to 125–400 nmol NO3 produced g–1 soil h–1 by first incubating a Ca(OH)2-amended, silt loam soil (pH 7.0±0.2) at field capacity (270 g H2O kg–1 soil) with 10 μmol NH4 + g–1 soil for 14 days, followed by another 10 days of incubation in a shaken slurry (2:1 water:soil, v/w) with periodic pH adjustment and maintenance of 10 mM NH4 +. These slurries actively degraded both methyl bromide (MeBr) and ethyl chloride (EtCl) at maximum rates of 20–30 nmol ml–1 h–1 that could be sustained for approximately 12 h. Although the MeBr degradation rates were linear for the first 10–12 h of incubation, they could not be sustained regardless of NH4 + level and declined to zero over 20 h of incubation. The transformation capacity of the slurry enrichments (~1 μmol MeBr ml–1 soil slurry) was similar to the value measured previously in cell suspensions of N. europaea with similar NH3-oxidizing activity. Several MeBr-degrading characteristics of the nitrifying enrichments were found to be similar to those documented in the literature for MeBr-degrading methanotrophs and facultatively methylotrophic bacteria. Electronic Publication  相似文献   

7.
Most probable numbers (MPNs) of methanogens in various salt marsh and estuarine sediments were determined with an anaerobic, habitat-simulating culture medium with 80% H2 plus 20% CO2 as substrate. Average MPNs for the short Spartina (SS) marsh sediments of Sapelo Island, Ga., were maximal at the 5- to 7-cm depth (1.2 × 107/g of dry sediment). Populations decreased to approximately 880/g of dry sediment at the 34- to 36-cm depth. There was no significant difference between summer and winter populations. In tall Spartina (TS) marsh sediments, average populations were maximal (1.2 × 106/g of dry sediment) in the upper 0- to 2-cm zone; populations from the 5- to 36-cm zones were similar (average of 9 × 104/g of dry sediment). Methanogenic populations for TS sediments of James Island Creek marsh, Charleston, S.C., were similar (average of 3 × 106/g of dry sediment) for all depths tested (0 to 22 cm), which was comparable to the trend observed for TS sediments at Sapelo Island, Ga. Sediment grab samples collected along a transect of James Island Creek and its adjacent Spartina marsh had MPNs that were approximately 20 times greater for the region of Spartina growth (average of 106/g of dry sediment) compared with the channel (approximately 5 × 104 methanogens per g of dry sediment). A similar trend was found at Pawley's Island marsh, S.C., but populations were approximately one order of magnitude lower. In vitro rates of methanogenesis with SS sediments incubated under 80% H2-20% CO2 showed that the 5- to 7-cm region exhibited maximal activity (51 nmol of CH4 g−1 h−1), which was greater than rates for sediments above and below this depth. SS sediment samples (5 to 7 cm) incubated under 100% N2 and supplemented with formate exhibited rates of methanogenesis similar to those generated by samples under 80% H2-20% CO2. Replacing the N2 atmosphere with H2 resulted in an eightfold decrease in the rate of methanogenesis. In vitro methanogenic activity by TS salt marsh sediments, incubated under 80% H2-20% CO2, was similar for all depths tested (0 to 22 cm). TS sediment samples (0 to 7 cm) supplemented with formate and incubated under 100% N2 had greater rates of methanogenesis compared with unsupplemented samples.  相似文献   

8.
韩琳  王鸽 《生态学杂志》2012,31(8):1893-1902
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。  相似文献   

9.
Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.  相似文献   

10.
Although many northern peat-forming wetlands (peatlands) are a suitable habitat for anaerobic CH 4 -producing bacteria (methanogens), net CH 4 fluxes are typically low in forested systems. We examined whether soil factors (aeration, substrate availability, peat size fractions) constrained net CH 4 production in peat from a Sphagnum -moss dominated, forested peatland in central New York State. The mean rate of net CH 4 production measured at 24° C was 79 nmol g -1 d -1 , and the mean rate of CO 2 production (respiration) was 5.7 w mol g -1 d -1 , in surface (0 to 10 cm) and subsurface (30 to 40 cm) peat. Saturated peat (900% water content) exposed to oxic conditions for 2 days or 14 days showed no net CH 4 production when subsequently exposed to anoxic conditions. Rates of CO 2 production, measured concomitantly, were essentially the same under oxic and anoxic conditions, and net CH 4 consumption under oxic conditions was barely affected by short-term exposure to anoxic conditions. Therefore, methanogens were particularly sensitive to aeration. Net CH 4 production in whole peat increased within hours of adding either acetate, glucose, or ethanol, substrates that methanogens can convert directly or indirectly into CH 4 , indicating that availability of these substrate might limit net CH 4 production in situ. In longer incubations of 30 days, only ethanol addition stimulated a large increase in net CH 4 production, suggesting growth in the population of methanogens when ethanol was available. We fractionated peat into size fractions and the largest sized fraction (> 1.19 mm), composed mostly of roots, showed the greatest net CH 4 production, although net CH 4 production in smaller fractions showed the largest response to ethanol addition. The circumstantial evidence presented here, that ethanol coming from plant roots supports net CH 4 production in forested sites, merits more research.  相似文献   

11.
Adenosine deaminase (ADA; EC 3.5.4.4) activity is responsible for cleaving adenosine to inosine. In this study we described the biochemical properties of adenosine deamination in soluble and membrane fractions of zebrafish (Danio rerio) brain. The optimum pH for ADA activity was in the range of 6.0-7.0 in soluble fraction and reached 5.0 in brain membranes. A decrease of 31.3% on adenosine deamination in membranes was observed in the presence of 5 mM Zn(2+), which was prevented by 5 mM EDTA. The apparent K(m) values for adenosine deamination were 0.22+/-0.03 and 0.19+/-0.04 mM for soluble and membrane fractions, respectively. The apparent V(max) value for soluble ADA activity was 12.3+/-0.73 nmol NH(3) min(-1) mg(-1) of protein whereas V(max) value in brain membranes was 17.5+/-0.51 nmol NH(3) min(-1) mg(-1) of protein. Adenosine and 2'-deoxyadenosine were deaminated in higher rates when compared to guanine nucleosides in both fractions. Furthermore, a significant inhibition on adenosine deamination in both soluble and membrane fractions was observed in the presence of 0.1 mM of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The presence of ADA activity in zebrafish brain may be important to regulate the adenosine/inosine levels in the CNS of this species.  相似文献   

12.
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N(2)O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N(2)O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm(-3) h(-1). The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (+/- 10) nmol cm(-2) h(-1), which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment.  相似文献   

13.
Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths.  相似文献   

14.
To investigate the effective depth from the surface sediment, and phosphorus fractions related to phosphorus release under short-term anoxic conditions, varying lengths of sediment cores taken from Lake Kasumigaura, a large shallow polymictic lake in Japan, were incubated for a few weeks and then analyzed. Results showed few differences in total phosphorus (TP) amount per unit area in overlying waters irrespective of the core thickness, and sums of TP in both overlying water and 0- to 2-cm sediment layers were nearly equal before and after the experiment, indicating that phosphorus was released mainly from the 0- to 2-cm layer by dissolution. In contrast, phosphorus was decreased in pore water below a 2-cm depth, probably through sorption to sediment solids. The citrate-dithionite-bicarbonate total phosphorus (CBD-TP) and non-reactive phosphorus extracted by NaOH (NaOH-NRP) in sediment solids in the 0- to 2-cm layer decreased during the experiment. The decreases of CBD-TP were 10 times higher than those of NaOH-NRP, suggesting that the released phosphorus came mainly from the fraction bound to iron in Lake Kasumigaura.  相似文献   

15.
 研究了在不同放牧率下形成的不同退化阶段的草地各形态氮素(全氮、硝态氮、铵态氮、无机氮和微生物氮)的变化情况,同时也研究了植被地上绿色生物量与各形态氮素季节变化的同步性关系。土壤全氮含量相对稳定,随草地植被状况和植物生长时期变化不大,说明土壤总氮库有相当的弹性。土壤硝态氮(NO-3-N)、铵态氮(NH+4-N)、无机氮(IN)和微生物氮(Micro-N)季节变化明显。土壤Micro-N和NO-3-N含量随植物生长逐渐降低,到植物枯黄期含量又回复到较高的水平;土壤NH+4-N含量随植物生长有逐渐升高的趋势;IN则随着植物的生长出现低-高-低-高的特点,且与植被地上绿色生物量呈显著负相关(R=-0.247, p<0.01)。在放牧条件下草原植物优先利用NO-3-N,NO-3-N与植被地上绿色生物量有显著的负相关性,是形成草原植被地上绿色生物量的有效性氮素。Micro-N能解释土壤IN 22.3%的变异(R2=0.223, p<0.01),Micro-N是土壤无机氮的重要来源。土壤NH+4-N与Micro-N呈显著负相关(R=-0.222, p<0.01),说明土壤微生物对土壤NH+4-N有偏好吸收。总体上,不同形态的氮素在各土壤层次间差异显著,随土壤层次的加深含量逐步降低。连续放牧11年恢复两年后,各氮素组分对放牧压力消除的响应并不一致。土壤全氮含量与停止放牧前相比变化差异不显著;而Micro-N对放牧压力消失的响应在不同处理下整个生长季的结果比较一致,即以前过度和中度放牧处理的Micro-N含量较高,无牧和轻牧含量较低;IN、NH+4-N和NO-3-N变化比较复杂,在不同放牧恢复处理上结果并不一致。总的来看,以前中度和过度放牧的IN、NH+4-N和NO-3-N含量较高,存在潜在损失的可能。经过两年的恢复,植被地上绿色生物量(8月)过牧处理与无牧处理差异不显著。  相似文献   

16.
Dissimilatory reduction of NO(2) to N(2)O and NH(4) by a soil Citrobacter sp. was studied in an attempt to elucidate the physiological and ecological significance of N(2)O production by this mechanism. In batch cultures with defined media, NO(2) reduction to NH(4) was favored by high glucose and low NO(3) concentrations. Nitrous oxide production was greatest at high glucose and intermediate NO(3) concentrations. With succinate as the energy source, little or no NO(2) was reduced to NH(4) but N(2)O was produced. Resting cell suspensions reduced NO(2) simultaneously to N(2)O and free extracellular NH(4). Chloramphenicol prevented the induction of N(2)O-producing activity. The K(m) for NO(2) reduction to N(2)O was estimated to be 0.9 mM NO(2), yet the apparent K(m) for overall NO(2) reduction was considerably lower, no greater than 0.04 mM NO(2). Activities for N(2)O and NH(4) production increased markedly after depletion of NO(3) from the media. Amendment with NO(3) inhibited N(2)O and NH(4) production by molybdate-grown cells but not by tungstate-grown cells. Sulfite inhibited production of NH(4) but not of N(2)O. In a related experiment, three Escherichia coli mutants lacking NADH-dependent nitrite reductase produced N(2)O at rates equal to the wild type. These observations suggest that N(2)O is produced enzymatically but not by the same enzyme system responsible for dissimilatory reduction of NO(2) to NH(4).  相似文献   

17.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66°S, 143°E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15°C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

18.
Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments   总被引:3,自引:3,他引:0       下载免费PDF全文
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum.  相似文献   

19.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66 degrees S, 143 degrees E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15 degrees C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

20.
三江平原典型小叶章湿地土壤氮素净矿化与硝化作用   总被引:4,自引:2,他引:4  
2004年6月—2005年7月,利用PVC顶盖原位培育法研究了三江平原典型草甸小叶章湿地和沼泽化草甸小叶章湿地土壤(0~15cm)无机氮库、净矿化/硝化速率动态、影响因素及年净矿化/硝化量.结果表明:两种湿地土壤的无机氮均呈明显的动态变化特征,其NH4 -N、NO3-N含量均表现为典型草甸小叶章湿地>沼泽化草甸小叶章湿地.两种湿地土壤的净矿化/硝化速率均呈明显的波动变化,生物固持作用、反硝化作用以及雨季较多降水是导致净矿化/硝化速率出现负值的主要原因.温度、降水、土壤有机质含量、C/N和pH是引起二者土壤无机氮库、净矿化/硝化速率存在明显差异的重要原因.典型草甸小叶章湿地的年净矿化量(19.41kg·hm-2)、年净硝化量(4.27kg·hm-2)以及净硝化量占净矿化量的百分比(22.00%)明显高于沼泽化草甸小叶章湿地(5.51kg·hm-2、0.28kg·hm-2和5.08%),说明前者的氮有效性以及维持可利用氮的能力明显高于后者.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号