首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

2.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

3.
Utilization of N from 15NH4Cl and [15N]alanine for urea synthesis in hepatocytes isolated from fed and 24 hr starved rats was investigated. In hepatocytes isolated from fed rats, 54 and 65% of the added [15N]ammonia was utilized for urea synthesis in the presence of 0.5 and 2.0 mM NH4Cl, respectively. This utilization of [15N]ammonia in hepatocytes from starved rats was 2-fold lower. The amount of urea synthetized from endogenous sources was, in the presence of 0.5 and 2.0 mM NH4Cl, about 44 and 60% higher than in the control conditions (without NH4Cl). The considerable amount of added ammonia (30-44%) was utilized in processes other than urea synthesis. Alanine markedly diminished the utilization of 15N from NH4Cl in hepatocytes from both fed and starved rats. In these conditions (NH4Cl present), alanine significantly increased the urea formation in hepatocytes from starved rats and failed to affect the urea production in hepatocytes from fed rats. On the basis of 15N determination, it was concluded that both NH4Cl and alanine caused an increase in the utilization of nitrogen from endogenous sources in rat hepatocytes. This conclusion is in contrast with the results based only on the changes in ammonia and urea concentrations.  相似文献   

4.
The activity against human cancer cell lines including ovarian: A2780, A2780(cisR), cell up take, DNA-binding and nature of interaction with pBR322 plasmid DNA have been studied for four multinuclear complexes code named DH4Cl, DH5Cl, DH6Cl and DH7Cl, having the general formula: [[trans-PtCl(NH(3))(2)](2)mu-[trans-Pd(NH(3))(2)-(H(2)N(CH(2))(n)NH(2))(2)]]Cl(4) where n=4, 5, 6 and 7 for DH4Cl, DH5Cl, DH6Cl and DH7Cl, respectively. The compounds are found to exhibit significant anticancer activity against ovarian cancer cell lines: A2780, A2780(cisR) and A2780(ZD0473R). DH6Cl in which the linking diamine has six carbon atoms is found to be the most active compound. As the number of carbon atoms in the linking diamine is decreased below six and increased above six, the activity is found to decrease, illustrating structure-activity relationship. All the multinuclear compounds are believed to form a plethora of long-range interstrand GG adducts with DNA dictated by the sequence of bases in the DNA strands. Increasing prevention of BamH1 digestion with the increase in concentration of the compounds is due to global changes in DNA conformation brought about by interstrand long-range binding of the compounds with DNA.  相似文献   

5.
本文主要报导了具有放氧活性的光系统Ⅱ(PSⅡ)颗粒的毫秒延迟荧光(ms-DF)的特性以及NH_4Cl对它的调节作用.  相似文献   

6.
The substrates for hepatic ureagenesis are equimolar amounts of ammonium and aspartate. The study design mimics conditions in which the liver receives more NH(+)(4) than aspartate precursors (very low-protein diet). Fasted dogs, fitted acutely with transhepatic catheters, were infused with a tracer amount of (15)NH(4)Cl. From arteriovenous differences, the major NH(+)(4) precursor for hepatic ureagenesis was via deamidation of glutamine in the portal drainage system (rather than in the liver), because there was a 1:1 stoichiometry between glutamine disappearance and NH(+)(4) appearance, and the amide (but not the amine) nitrogen of glutamine supplied the (15)N added to the portal venous NH(+)(4) pool. The liver extracted all this NH(+)(4) from glutamine deamidation plus an additional amount in a single pass, suggesting that there was an activator of hepatic ureagenesis. The other major source of nitrogen extracted by the liver was [(14)N]alanine. Because alanine was not produced in the portal venous system, we speculate that it was derived ultimately from proteins in peripheral tissues.  相似文献   

7.
Three experiments determined first, the effect of increasing ammonium chloride (NH(4)Cl) concentrations on the growth and metabolism of bovine granulosa cells isolated from small and medium-sized bovine ovarian follicles; secondly, whether the changes in granulosa cell growth and metabolism induced by NH(4)Cl were reversible; and thirdly, whether granulosa cells, previously conditioned with NH(4)Cl, were able to support maturation of oocytes in vitro. In Experiment 1, using a 2 (follicle size class) x 5 (NH(4)Cl concentration) factorial design, granulosa cells from small or medium-sized ovarian follicles were incubated for 96 h with 0, 0.2, 0.4, 0.8 or 1.6 micromol NH(4)Cl/ml. Experiment 2 used a split plot factorial design where granulosa cells were incubated for 96 h in the presence or absence of 1 micromol/ml NH(4)Cl and then incubated in the absence or presence of 1 micromol/ml NH(4)Cl for a further 48 h. Finally in Experiment 3, ovine oocytes were matured on layers of bovine granulosa cells which had not been conditioned with NH(4)Cl or conditioned with 0.5 or 1.0 micromol/ml NH(4)Cl and development of embryos to the blastocyst stage followed and blastocyst quality assessed. In Experiment 1, incubation of granulosa cells in increasing concentrations of NH(4)Cl reduced cell growth, increased cell protein concentrations and increased the amounts of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) oxidised and oestradiol and progesterone produced per 10(5) cells. Cells from medium-sized follicles were more sensitive to NH(4)Cl concentration and oxidised more MTT and produced less progesterone at high NH(4)Cl concentrations than cells from small-sized follicles. When, in Experiment 2, NH(4)Cl was removed from cell culture after 96 h incubation, cells previously exposed to NH(4)Cl grew at a slower rate during the subsequent 48 h, contained more cellular protein, oxidised more MTT and produced more oestradiol and progesterone than cells not previously exposed to NH(4)Cl. Maturation of ovine oocytes in coculture with bovine granulosa cells not exposed to NH(4)Cl (Experiment 3) increased egg cleavage rate and the proportion of cleaved eggs which developed to the blastocyst stage. Conditioning of granulosa cells with NH(4)Cl supported egg cleavage and development to the blastocyst stage at rates similar to those observed in the absence of granulosa cells. In conclusion, these experiments showed that the in vitro growth and metabolism of granulosa cells were altered by concentrations of NH(4)Cl similar to ammonium ion concentrations measured in follicular fluid and that these effects were not immediately reversible. Furthermore, the ability of granulosa cells conditioned with NH(4)Cl to support in vitro maturation of oocytes was impaired.  相似文献   

8.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

9.
Effects of a novel zinc compound (polaprezinc), N-(3-aminopropionyl)-L-histidinato zinc, on the mucosal ulcerogenic and healing impairing responses induced by monochloramine (NH2Cl) were examined in rat stomach. Oral administration of NH2Cl (> 60 mM) produced severe hemorrhagic lesions in unanesthetized rat stomachs with a marked increase of thiobarbituric acid reactants (TBAR). Pretreatment of the animals with polaprezinc (3 approximately 30 mg/kg, p.o.) showed a dose-dependent inhibition against gastric ulcerogenic and TBAR responses induced by NH2Cl (120 mM). Likewise, mucosal exposure to NH4OH (60 mM) in urethane anesthetized stomachs made ischemic by bleeding from the carotid artery (1 ml per 100 g body w.t.) resulted in severe gastric lesions. This ulcerogenic response caused NH4OH plus ischemia was also attenuated by prior application of polaprezinc as well as taurine (25 mg/ml, 1 ml). On the other hand, the healing of gastric mucosal lesions induced by NH2Cl occurred more slowly than of ethanol-induced lesions, and the latter was significantly delayed by the repeated administration of NH2Cl. Polaprezinc (> 10 mg/kg, p.o.) given twice daily for 7 days not only accelerated the healing of NH2Cl-induced gastric lesions but also antagonized the delayed healing of ethanol-induced lesions in the presence of NH2Cl as well. Polaprezinc showed a scavenging action against NH2Cl in vitro. These results suggest that NH2Cl caused deleterious action on the healing of pre-existing acute lesions as well as irritating action to the mucosa in the rat stomach. Polaprezinc not only protects the stomach against injury caused by NH2Cl but also promotes healing of NH2Cl-induced gastric lesions as well as the delayed healing of ethanol-induced lesions caused by NH2Cl. Although the detailed mechanisms underlying these actions of polaprezinc remain unknown, they may be partly attributable to a scavenging action of this agent against NH2Cl.  相似文献   

10.
Batch and continuous cultures were used to compare specific physiological features of the hyperthermophilic archaeon, Thermococcus litoralis (T(opt) of 85 degrees to 88 degrees C), to another fermentative hyperthermophile that reduces S degrees facultatively, that is, the bacterium Thermotoga maritima (T(opt) of 80 degrees to 85 degrees C). Under nutritionally optimal conditions, these two hyperthermophiles had similar growth yields on maltose and similar cell formula weights based on elemental analysis: CH(1.7)O(0. 7)N(0.2)S(0.006) for T. litoralis and CH(1.6)O(0.6)N(0.2)S(0.005) for T. maritima. However, they differed with respect to nitrogen source, fermentation product patterns, and propensity to form exopolysaccharides (EPS). T. litoralis could be cultured in the absence or presence of maltose on an amino acid-containing defined medium in which amino acids served as the sole nitrogen source. T. maritima, on the other hand, did not utilize amino acids as carbon, energy, or nitrogen sources, and could be grown in a similar defined medium only when supplemented with maltose and ammonium chloride. Not only was T. litoralis unable to utilize NH(4)Cl as a nitrogen source, its growth was inhibited at certain levels. At 1 g/L ( approximately 20 mM) NH(4)Cl, the maximum growth yield (Y(x/s(max))) for T. litoralis was reduced to 13 g cells dry weight (CDW)/mol glucose from 40 g CDW/mol glucose in media lacking NH(4)Cl. Alanine production increased with increasing NH(4)Cl concentrations and was most pronounced if growth on NH(4)Cl was carried out in an 80% H(2) atmosphere. In T. maritima cultures, which would not grow in an 80% H(2) atmosphere, alanine and EPS were produced at much lower levels, which did not change with NH(4)Cl concentration. EPS production rose sharply at high dilution rates for both organisms, such that maltose utilization plots were biphasic. Wall growth effects were also noted, because cultures failed to wash out at dilution rates significantly above maximum growth rates determined from batch growth experiments. This study illustrates the importance of effective cultivation methods for addressing physiological issues related to the growth of hyperthermophilic heterotrophs.  相似文献   

11.
R Nieto  F Cruz  J M Tejedor  G Barroso  S Cerdán 《Biochimie》1992,74(9-10):903-911
The sources of ammonia used by isolated, intact rat liver mitochondria in the production of citrulline have been investigated in situ using a novel methodology based on the analysis of 13C-15N heteronuclear couplings observed by 13C NMR. Isolated mitochondria from rat liver were incubated with ornithine, 13CO3H- and 15NH4Cl, using unlabeled glutamate or glutamine as alternative, intramitochondrial nitrogen donors. The production of (7-13C, 8-15N) or (7-13C, 8-14N) citrulline was determined in situ by 13C NMR and the relative proportions of 15N- and 14N-citrullines confirmed by high resolution 13C NMR analysis of the C-7 citrulline resonance observed in perchloric acid extracts prepared at the end of the incubations. The 15N fractional enrichment of the intramitochondrial NH3 pool was manipulated either by modifying the 15N enrichment of added 15NH4Cl, or by altering the concentration of the unlabeled nitrogen donors in the incubation medium. Fractional 15N enrichments measured in the N-8 nitrogen of the resulting (7-13C) citrulline closely paralleled those of the external 15NH4Cl with minor dilutions derived from the unlabeled nitrogen contribution from the alternative substrates. In the presence of 10 mM 15NH4Cl, 10 mM glutamate contributed 4% of the citrulline N-8 nitrogen. Under similar conditions, the contribution of nitrogen from 10 mM glutamine to N-8 citrulline was 6%. These results indicate that the primary source of ammonia used for citrulline synthesis by isolated, intact rat liver mitochondria is extramitochondrial, providing also an illustration of the use of 13C-15N spin coupling patterns observed by 13C NMR, as a new tool in the study of ammonia metabolism.  相似文献   

12.
The reaction of [Pt(dien)Cl1Cl (dien = NH2CH2CH2NHCH2CH2NH2) with nucleotides has been studied by nuclear magnetic resonance. It has been found that the CMP (cytidine 5'-monophosp-ate) and GMP (guanosine 5'-monophosphate/coordinate to the platinum atom through N3 and N7, respectively. The reaction of the platinum salt with the nucleotide is complete when one to one ratio of platinum to nucleotide is used and no evidence of phosphate group binding to platinum has been found. No additional binding sites have been detected except the N7 site on the guanylic group of GMP even in the presence of a large excess of [Pt(dien) Cl1Cl. The AMP (adenosine 5'monophosphate] coordinates to the platinum at the N1 and/or N7 sites. The reaction of AMP and platinum is complete is complete at a ratio of four platinum to one AMP.  相似文献   

13.
Role of intracellular pH in secretion from adrenal medulla chromaffin cells   总被引:5,自引:0,他引:5  
The role of intracellular pH in stimulus-secretion coupling was investigated in cultured bovine adrenal medullary chromaffin cells. NH4Cl (1-25 mM) did not affect basal catecholamine or ATP release but markedly inhibited nicotine- or high K+-induced release by up to 60%. The inhibition had a rapid onset (less than 1 min) and was maximal at about 5 mM NH4Cl. The effect of NH4Cl was largely sustained over 20 min and was reversed upon NH4Cl removal. Sodium propionate did not affect secretion but partially reversed the inhibition by NH4Cl in a concentration-dependent manner. Methylamine (10 mM) produced a similar, but slower, inhibition than NH4Cl. Monensin (1-10 microM) inhibited catecholamine secretion by 30-60%, and its effect was reduced in the presence of NH4Cl. Using the fluorescent Ca2+ probe Fura-2, we found that the increase of [Ca2+]i following stimulation was not altered by concentrations of NH4Cl which inhibited secretion maximally. Measurement of cytosolic pH (pHi) with the fluorescent probe 2',7'-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF) revealed an alkalinization by NH4Cl (2.5-25 mM) of 0.1-0.23 pH units and acidification by sodium propionate (10-20 mM) of 0.2-0.25 pH units, with intermediate combined effects. Monensin (1 microM) caused a cytosolic acidification of 0.26 pH units. All pHi changes were partly recovered in 15 min. Fluorescence quenching measurements using the weakly basic fluorescent probe acridine orange indicated the accumulation of the probe into acidic compartments, presumably the chromaffin granules, which was strongly reduced by both NH4Cl and monensin. From these findings we conclude that the pH of the chromaffin granule modulates secretion by affecting some step in the secretory process unrelated to the rise in [Ca2+]i.  相似文献   

14.
This study was undertaken to determine the mechanism by which ammonium chloride (NH(4)Cl) inhibits stimulated acid secretion in the bullfrog gastric mucosa. To this end, four possible pathways of inhibition were studied: 1) blockade of basolateral K(+) channel, 2) blockade of ion transport activity, 3) neutralization of secreted H(+) in the luminal solution, or 4) ATP depletion. Addition of nutrient 10 mM NH(4)Cl (calculated NH(3) concentration = 92.5 microM and NH(4)(+) concentration = 9.91 mM) inhibited acid secretion within 30 min. Inhibition of acid secretion did not occur by blockade of basolateral K(+) channel activity or ion transport activity or by neutralization of the luminal solution. Although ATP depletion occurred in the presence of NH(4)Cl, the magnitude of ATP depletion in 30 min was not sufficient to inhibit stimulated acid secretion. By comparing the effect of NH(4)Cl on the resistance of inhibited or stimulated tissues, we demonstrate that NH(4)Cl acts specifically on stimulated tissues. We propose that NH(4)Cl blocks activity of an apical K(+) channel present in stimulated oxyntic cells. Our data suggest that the activity of this channel is important for the regulation of acid secretion in bullfrog oxyntic cells.  相似文献   

15.
The Cl(-)/anion exchanger pendrin (SLC26A4) is expressed on the apical side of renal non-type A intercalated cells. The abundance of pendrin is reduced during metabolic acidosis induced by oral NH(4)Cl loading. More recently, it has been shown that pendrin expression is increased during conditions associated with decreased urinary Cl(-) excretion and decreased upon Cl(-) loading. Hence, it is unclear if pendrin regulation during NH(4)Cl-induced acidosis is primarily due the Cl(-) load or acidosis. Therefore, we treated mice to increase urinary acidification, induce metabolic acidosis, or provide an oral Cl(-) load and examined the systemic acid-base status, urinary acidification, urinary Cl(-) excretion, and pendrin abundance in the kidney. NaCl or NH(4)Cl increased urinary Cl(-) excretion, whereas (NH(4))(2)SO(4), Na(2)SO(4), and acetazolamide treatments decreased urinary Cl(-) excretion. NH(4)Cl, (NH(4))(2)SO(4), and acetazolamide caused metabolic acidosis and stimulated urinary net acid excretion. Pendrin expression was reduced under NaCl, NH(4)Cl, and (NH(4))(2)SO(4) loading and increased with the other treatments. (NH(4))(2)SO(4) and acetazolamide treatments reduced the relative number of pendrin-expressing cells in the collecting duct. In a second series, animals were kept for 1 and 2 wk on a low-protein (20%) diet or a high-protein (50%) diet. The high-protein diet slightly increased urinary Cl(-) excretion and strongly stimulated net acid excretion but did not alter pendrin expression. Thus, pendrin expression is primarily correlated with urinary Cl(-) excretion but not blood Cl(-). However, metabolic acidosis caused by acetazolamide or (NH(4))(2)SO(4) loading prevented the increase or even reduced pendrin expression despite low urinary Cl(-) excretion, suggesting an independent regulation by acid-base status.  相似文献   

16.
The purpose of this investigation was to examine the effect of ammonium chloride (NH4Cl) and sodium bicarbonate (NaHCO3) ingestion on the physical working capacity at the fatigue threshold (PWCFT). Eighteen adult males (mean age, SD = 23, 2 years) volunteered for two experiments (experiment 1, n = 9; experiment 2, n = 9). In both experiments, the subjects orally ingested 0.3 g.kg-1 body weight of NH4Cl and NaHCO3 over a 3-h period in random order on days separated by 72 h or more. In experiment 1, following ingestion of the substance, the subjects performed a discontinuous incremental cycle ergometer test to the onset of PWCFT which was estimated from integrated electromyography voltages at the vastus lateralis muscle. In experiment 2, the subjects performed a continuous PWCFT test. The results of these experiments indicated that NH4Cl and NaHCO3 ingestion had no significant (P greater than 0.05) effect on PWCFT (experiment 1: NH4Cl = 257, SD 26 W; NaHCO3 = 256, SD 22 W; t = 0.06; r = 0.866; experiment 2: NH4Cl = 231, 14 W; NaHCO3 = 216, 16 W; t = 1.78; r = 0.857).  相似文献   

17.
The effect on the vasocontractile response of pretreatment with NH4Cl at a concentration (10 mM) that made almost no change in the resting tension was investigated using aortic strips from rats. NH4Cl pretreatment for 10 min significantly potentiated strip contractions induced by KCl (less than or equal to 30 mM), BAY K 8644 (0.1 microM) and phenylephrine (0.01 microM). This potentiating action of NH4Cl was eliminated in presence of nifedipine (1 microM). KCl (14.7 mM)-stimulated 45Ca uptake in rat aorta was significantly potentiated by pretreatment with NH4Cl (10 mM) for 10 min, but this NH4Cl effect was also eliminated in the presence of nifedipine. These results suggest that NH4Cl potentiates contractions induced by KCl and agonists in rat aorta by facilitating calcium influx through the nifedipine-sensitive calcium channel.  相似文献   

18.
We have utilized [(15)N]alanine or (15)NH(3) as metabolic tracers in order to identify sources of nitrogen for hepatic ureagenesis in a liver perfusion system. Studies were done in the presence and absence of physiologic concentrations of portal venous ammonia in order to test the hypothesis that, when the NH(4)(+):aspartate ratio is >1, increased hepatic proteolysis provides cytoplasmic aspartate in order to support ureagenesis. When 1 mm [(15)N]alanine was the sole nitrogen source, the amino group was incorporated into both nitrogens of urea and both nitrogens of glutamine. However, when studies were done with 1 mm alanine and 0.3 mm NH(4)Cl, alanine failed to provide aspartate at a rate that would have detoxified all administered ammonia. Under these circumstances, the presence of ammonia at a physiologic concentration stimulated hepatic proteolysis. In perfusions with alanine alone, approximately 400 nmol of nitrogen/min/g liver was needed to satisfy the balance between nitrogen intake and nitrogen output. When the model included alanine and NH(4)Cl, 1000 nmol of nitrogen/min/g liver were formed from an intra-hepatic source, presumably proteolysis. In this manner, the internal pool provided the cytoplasmic aspartate that allowed the liver to dispose of mitochondrial carbamyl phosphate that was rapidly produced from external ammonia. This information may be relevant to those clinical situations (renal failure, cirrhosis, starvation, low protein diet, and malignancy) when portal venous NH(4)(+) greatly exceeds the concentration of aspartate. Under these circumstances, the liver must summon internal pools of protein in order to accommodate the ammonia burden.  相似文献   

19.
We have observed the changes in the intracellular ammonium (NH4+) content and the intracellular pH during administration of 20 mM NH4Cl (the ammonium pulse experiment) using nitrogen-14 and phosphorus-31 nuclear magnetic resonance spectroscopy (14N and 31P NMR) at 8.45 T. In the isolated perfused rat mandibular salivary gland, resonances of trimethylamines (-328 p.p.m.) and betaine (-329 p.p.m. from the resonance of NO3-) were detected. A chemical shift reagent, 10 mM of dysprosium triethylenetetramine-N,N,N',N",N"',N"'-hexaacetic acid (Dy(TTHA], was used to discriminate between the resonances from the extracellular NH4+ (-352 p.p.m.) and the intracellular NH4+ (-355 p.p.m.). During the NH4Cl application, the intracellular NH4+ content [( NH4+]i) increased quickly to ca. 50 mmol per litre intracellular fluid (ICF), then increased gradually to ca. 70 mmol per litre ICF. The intracellular pH (pHi), calculated from the 31P chemical shift of inorganic phosphate, increased transiently by 0.5 pH units and then decreased gradually in spite of the high level of [NH4+]i. The initial increase of [NH4+]i, which was observed by 14N NMR, was larger than that calculated from the intracellular pH on an assumption of a non-ionic diffusion process for ammonia. These results suggest a possibility of influx of NH4+, and also suggest an activation of cellular buffering mechanism that extrudes the excess bases from the cells.  相似文献   

20.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号