首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene cluster that codes for feedback-resistant aspartate kinase (lysCα and lysCβ) and aspartate semialdehyde dehydrogenase (asd) was cloned from a mutant strain of Corynebacterium glutamicum. Its functional analysis by subcloning, enzyme assays, and type of aspartate kinase regulation enabled the isolation of a fragment for separate expression of the feedback-resistant kinase without aspartate semialdehyde dehydrogenase expression. This was used together with other clones constructed (J. Cremer, L. Eggeling, and H. Sahm, Mol. Gen. Genet. 220:478-480, 1990) to overexpress individually each of the six genes that convert aspartate to lysine. Analysis of lysine formation revealed that overexpression of the feedback-resistant kinase alone suffices to achieve lysine formation (38 mM). Also, sole overexpression of wild-type dihydrodipicolinate synthase resulted in lysine formation but in a lower amount (11 mM). The other four enzymes had no effect on lysine secretion. With a plasmid overexpressing both relevant enzymes together, a further increase in lysine yield was obtained. This shows that of the six enzymes that convert aspartate to lysine the kinase and the synthase are responsible for flow control in the wild-type background and can be useful for construction of lysine-producing strains.  相似文献   

2.
Summary A strain of Corynebacterium glutamicum was isolated that accumulated up to 44 g/l of L-lysine-HCl from 100 g/l of glucose × H2O in a simple mineral salts medium. This strain was obtained from the wildtype by two mutagenesis steps. In the first step the aminoethyl-cysteine-resistant strain MH20 was obtained and in the second step the Leu derivative MH20-22B. Enzymatic analysis of the hyperproducer MH20-22B revealed that this strain has feedback-resistant aspartate kinase and is devoid of isopropylmalate dehydratase. In addition, this strain has an extraordinarily high secretion rate of lysine (0.57 mmol/g dry weight and h), whereas strain MH20 has a low secretion rate (0.19 mmol/g per hour), and both strains have comparable cytosolic lysine concentrations. This suggests that the secretory step is influenced n the hyperproducer. Applying gene-directed mutagenesis, the aspartate kinase gene of the isolated strain (coding for feedback-resistant enzyme) was replaced by the gene coding of feedback-sensitive wild-type enzyme. The resulting strain still secretes lysine, although in low amounts (2 g/l). This is proof of the superior role of kinase regulation in metabolite flow and is indicative of unknown mutations, one of which is probably in the secretory system. Correspondence to: L. Eggeling  相似文献   

3.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

4.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

5.
The cultural conditions were investigated for a Brevibacterium flavum mutant, No. 2–190, with a low level of citrate synthase (CS) and with feedback-resistant phosphoenoipyruvate (PEP) carboxylase and aspartokinase (AK). The productivity was increased from 28 to 38 g/1 (as the HC1 salt) with a medium containing 10% glucose. From this strain, pyruvate kinase (PK)-defective mutants were derived and selected as to the inability to grow on ribose. Among them, strain Kl-18 showed higher lysine productivity than the parent under all cultural conditions tested, and produced 43 g/1 of lysine, at maximum. A lysine-producing mutant, No. 536–4, with a feedback- resistant AK was derived from PK-defective strain KH-21 which had low CS activity and a feedback-resistant PEP carboxylase. The mutant was isolated by a new selection method, that is, on the basis of resistance to α-amino-ß-hydroxyvaleric acid, a threonine analogue plus lysine. In this strain, HD had been altered so as to become feedback-resistant at the same time, resulting in the byproduction of threonine and isoleucine. The total amount of these aspartate family amino acids was higher on molar basis than that of lysine produced by strain No. 2–190.  相似文献   

6.
7.
Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.  相似文献   

8.
Summary Lysine excretion by the producer strain Corynebacterium glutamicum MH 20-22B was analyzed in relation to the internal lysine concentration. In contrast to the wild-type, lysine excretion in the producer strain was allosterically regulated by internal lysine. The apparent Hill coefficient of 1.3 – 2.2 indicates the presence of at least two cooperatively interacting lysine binding sites.  相似文献   

9.
Mutants with low pyruvate dehydrogenase (PD) activities were derived from a pyruvate kinase-deficient lysine-producing mutant of Brevibacterium flavum, No. 22. They were selected as prototrophic revertants of the acetate auxotrophs of strain No. 22. Among them strain KD-11 produced 55g/liter of lysine as its HCI salt when cultured for 72 hr in a medium containing lOOg/liter of glucose, soybean-meal hydrolysate and methionine. The lysine yield of strain KD-11 was the highest ever reported (55%). The mutant required a higher concentration of methionine for maximum production and gave a smaller amount of cell mass in cultivation than its parent. PD activity of strain No. 22 was stimulated by cysteine, stabilized by glycerol, and gave apparent Kms of 89, 22, 380, 83 μM for pyruvate, coenzyme A, 3-acetylpyridine adenine dinucleotide, and NAD, respectively, under standard conditions. The apparent Km for NAD of PD from strain KD-11 was 10-times higher than that from No. 22. When the concentration of NAD was low, the cell extracts of strain KD-11 showed low PD activity. The specific activity of phosphoenolpyruvate carboxylase of strain KD-11 was slightly higher than that of strain No. 22, while the inhibition by aspartate of the former enzyme was weaker than that of the latter.  相似文献   

10.
S. Morbach  H. Sahm    L. Eggeling 《Applied microbiology》1995,61(12):4315-4320
The biosynthesis of l-isoleucine proceeds via a highly regulated reaction sequence connected with l-lysine and l-threonine synthesis. Using defined genetic Corynebacterium glutamicum strains characterized by different fluxes through the homoserine dehydrogenase reaction, we analyzed the influence of four different ilvA alleles (encoding threonine dehydratase) in vectors with two different copy numbers on the total flux towards l-isoleucine. For this purpose, 18 different strains were constructed and analyzed. The result was that unlike ilvA in vectors with low copy numbers, ilvA in high-copy-number vectors increased the final l-isoleucine yield by about 20%. An additional 40% increase in l-isoleucine yield was obtained by the use of ilvA alleles encoding feedback-resistant threonine dehydratases. The strain with the highest yield was characterized by three hom(Fbr) copies encoding feedback-resistant homoserine dehydrogenase and ilvA(Fbr) encoding feedback-resistant threonine dehydratase on a multicopy plasmid. It accumulated 96 mM l-isoleucine, without any l-threonine as a by-product. The highest specific productivity was 0.052 g of l-isoleucine per g of biomass per h. This comparative flux analysis of isogenic strains showed that high levels of l-isoleucine formation from glucose can be achieved by the appropriate balance of homoserine dehydrogenase and threonine dehydratase activities in a strain background with feedback-resistant aspartate kinase. However, still-unknown limitations are present within the entire reaction sequence.  相似文献   

11.
Activity and regulation of key enzymes of the lysine biosynthetic pathway were investigated inBrevibacterium linens, a natural excretor of lysine, its lysine-overproducing homoserine auxotroph (Hom(-1)) and its auxotrophic and multianalogue-resistant high-yielding mutant (AEC NV 20(r)50). The activity of aspartate kinase (AK) and aspartaldehydate dehydrogenase (AD) was maximum during the mid-exponential phase of growth and decreased therafter. The mutants showed 10 and 20% more activity of AK and AD than the wild-type lysine excretor.B. linens (natural excretor) has a single AK and AD repressed and inhibited bivalently by lysine and threonine. Lysine slightly repressed and inhibited dihydrodipicolinate synthase (DS) and diaminopimelate decarboxylase (DD) of the wild type and of the mutant Hom(-1). The mutant AEC NV 20(r)50 showed DS and DD to be insensitive to lysine inhibition and repression. Persistence of a major part of the maximal activity of these enzymes during the late stationary phase of growth allowed prolonged synthesis and excretion of lysine. Stepwise addition of resistance to the different analogues of lysine in the mutant AEC NV20(r)50 resulted in an increase of enzyme activity and reduced repressibilities of enzymes that contributed to the high yield of lysine.  相似文献   

12.
用基因组重排技术选育赖氨酸高产菌株   总被引:6,自引:1,他引:5  
赵凯  段巍  孙立新  周东坡 《微生物学报》2009,49(8):1075-1080
摘要:【目的】以北京棒杆菌(Corynebacterium pekinense)1为研究对象,选育赖氨酸高产菌株,并探索赖氨酸产生菌基因组重排育种的基本规律。【方法】利用基因组重排技术选育赖氨酸高产菌株。【结果】通过四轮基因组重排成功选育出了5株遗传稳定的高产赖氨酸菌株,其中1株重排菌株赖氨酸产量达到16.95 g/dL,比原始菌株Corynebacterium pekinense 1赖氨酸产量提高了37.14%,比亲本菌株赖氨酸产量提高了17.46%~31.19%。【结论】首次采用基因组重排技术改良赖氨酸产生菌,成功选育出了5株产量较稳定的高产赖氨酸菌株,具有潜在的应用价值。  相似文献   

13.
Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and 13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.  相似文献   

14.
A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserine dehydrogenase by threonine and a deletion of the thrB gene (delta thrB) to abolish threonine synthesis. The constructed C. glutamicum MH20-22B/hom(FBR)/delta thrB strain accumulated 2.9 g/l of methionine by batch fermentation and showed resistance to methionine analogue ethionine at concentrations up to 30 mM. The growth of the strain was apparently impaired as a result of the accumulation of methionine biosynthetic intermediate, homocysteine. Production assays also revealed that the accumulation of methionine in the growth medium was transient and declined as the carbon source was depleted. During the period of methionine disappearance, the methionine biosynthetic genes were completely repressed in the engineered strains but not in the parental strain. After all, we have not only successfully constructed a methionine-producing C. glutamicum strain by genetic manipulation, but also revealed cellular constraints in attaining high yield and productivity.  相似文献   

15.
Lysine secretion in wild-type Corynebacterium glutamicum was investigated by means of dipeptide feeding during short-term fermentation. It could be shown that important properties of lysine excretion, e. g. dependence on membrane potential and the internal Michaelis constant (K m), are not different for the producing strain DG 52-5 and the wild type. The main difference seems to refer to regulatory properties of the lysine excretion carrier activity. The transport of lysine in the wild type is regulated by the presence and kind of carbon sources. These differences in transport activity are not due to changes in the driving force. A possible distinction between phosphotransferase system (PTS) and non-PTS carbon sources with respect to the observed regulatory phenomena is discussed.  相似文献   

16.
17.
Methionine-insensitive revertants with normal homoserine dehydrogenase (HD) derived from Brevibacterium flavum mutant No. 1-231, a lysine producer with S-(2-aminoethyl)-l-cysteine (AEC) resistance, methionine sensitivity, a low HD level and a pyruvate kinase (PK) defect, were still AEC-resistant and PK-deficient similar to No. 1-231. But they did not produce more lysine than the original strain, No. 15-8, from which strain No. 1-231 was derived. A high lysine producing mutant, No. 22, which was derived from strain No. 1-231, selected by sensitivity to β-fluoropyruvate (FP), and was defective in HD, produced more lysine than HD-defective mutants which were derived by two-step mutation from strain No. 1-231, selected by homoserine auxotrophy. Strain No. 22 did not show FP sensitivity under the conditions tested. Among various lysine-biosynthetic enzymes examined, it had a higher level of aspartate-β-semialdehyde dehydrogenase than did its parent and the latter HD-defective mutants. Strain No. 22 produced 50 g/liter of lysine as the HC1 salt when cultured for 72 hr in a medium containing soybean-meal hydrolysate, methionine and 100 g/liter of glucose.  相似文献   

18.
Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.  相似文献   

19.
Summary Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants regenerated from the variant cultures. A feedback insensitive form of dihydrodipicolinate synthase (DHPS), the pathway specific control enzyme for lysine synthesis, was detected in callus cultures and leaf extracts from the resistant lines. Aspartate kinase (AK), the other key enzyme in the regulation of lysine biosynthesis, was unaltered in the mutants. Crosses with wild type plants indicated that the mutation conferring insensitivity to feedback in DHPS, with as result overproduction of lysine and resistance to AEC, was inherited as a single dominant nuclear gene.Abbreviations AK aspartate kinase (EC 2.7.2.4) - DHPS dihydrodipicolinate synthase (EC 4.2.1.52) - AEC S-(2-aminoethyl)L-cysteine  相似文献   

20.
The lysine content of the biomass of the acidophilic facultatively methylotrophic bacterium Acetobacter methanolicus MB 58 was increased by genetic manipulations. A homoserine auxotroph, MB 58.196, and a threonine auxotroph, MB 58.195, were obtained from Acetobacter methanolicus MB 58 by N-methyl-N′-nitro-N-nitrosoguanidine treatment. Investigations of enzyme activities revealed that the homoserine auxotroph lacks homoserine dehydrogenase activity, and the threonine auxotroph lacks homoserine kinase activity. Concerning the lysine-producing ability, only the homoserine auxotrophic mutant accumulates lysine in the intracellular pool. The intracellular lysine content of this mutant was increased 40-fold. An excretion of amino acids into the medium was not detected. A homoserine resistant mutant, MB 58.196.10, isolated from MB 58.196 by UV-irradiation, was able to excrete lysine. About 95% of free lysine were found in the culture medium. Altogether, the free lysine concentration was increased 800-fold in comparison to the wild-type strain. By these genetic manipulations the total lysine concentration of MB 58.196 was increased to 2.7% and of MB 58.196.10 to 56% in comparison to the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号