首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many fungi produce exocellular beta-glucan-degrading enzymes, the beta-glucanases including the noncellulolytic beta-(1,3)- and beta-(1,6)-glucanases, degrading beta-(1,3)- and beta-(1,6)-glucans. An ability to purify several exocellular beta-glucanases attacking the same linkage type from a single fungus is common, although unlike the beta-1,3-glucanases, production of multiple beta-1,6-glucanases is quite rare in fungi. Reasons for this multiplicity remain unclear and the multiple forms may not be genetically different but arise by posttranslational glycosylation or proteolytic degradation of the single enzyme. How their synthesis is regulated, and whether each form is regulated differentially also needs clarifying. Their industrial potential will only be realized when the genes encoding them are cloned and expressed in large quantities. This review considers what is known in molecular terms about their multiplicity of occurrence, regulation of synthesis and phylogenetic diversity. It discusses how this information assists in understanding their functions in the fungi producing them. It deals largely with exocellular beta-glucanases which here refers to those recoverable after the cells are removed, since those associated with fungal cell walls have been reviewed recently by Adams (2004). It also updates the earlier review by Pitson et al. (1993).  相似文献   

2.
(-)-alpha-Pinene (1), a major constituent of many aromatic plants was biotransformed by the plant pathogenic fungus, Botrytis cinerea to afford three new metabolites, characterized as 3beta-hydroxy-(-)-beta-pinene (10%) (3), 9-hydroxy-(-)-a-pinene (12%) (4), 4beta-hydroxy-(-)-alpha-pinene-6-one (16%) (5) by physical and spectroscopic methods. A known metabolite verbenone (2) was also obtained.  相似文献   

3.
4.
(-)-beta-pinene, a flavor and fragrance monoterpene is an important constituent of essential oils of many aromatic plants. It was oxidized by a plant-pathogenic fungus, Botrytis cinerea to afford four metabolites characterized as (-)-6a-hydroxy-beta-pinene, (-)-4beta,5beta-dihydroxy-beta-pinene, (-)-2beta,3beta-dihydroxypinane, and (-)-4beta-hydroxy-beta-pinene-6-one by detailed spectroscopic studies along with other known metabolites.  相似文献   

5.
Germlings of Botrytis cinerea, an important fungal pathogen of plants, produce an extracellular matrix (ECM), or ensheathing film, that serves, in part, in their attachment (R. P. Doss, et al., Appl. Environ. Microbiol. 61:260–265, 1995). The composition of this film has been ascertained by using samples obtained by growing germlings on a glass surface, removing the fungal mycelium by vigorous washing, and collecting the tightly attached film by scraping the substratum with a razor blade. Slightly over half of the dry weight of the ECM was found to be carbohydrates (about 20%), proteins (about 28%), and lipids (about 6%). Hydrolysis of the carbohydrate portion of the ECM revealed that glucose was the most prominent monosaccharide present, comprising about 60% of the total monosaccharides. Also present were mannose (about 35%) and myo-inositol (about 5%). The proteinaceous fraction of the ECM was made up of a number of polypeptides separable by polyacrylamide gel electrophoresis. The lipid fraction of the ECM, analyzed by thin-layer chromatography, was made up of several simple lipid components, including free fatty acid, mono- and triacylglycerol, wax ester, fatty alcohol, and several unidentified components. No complex lipids were detected. Isolated ECM exhibited polygalacturonase and laccase activity and was able to catalyze the hydrolysis of p-nitrophenyl butyrate, a model substrate for assessing cutinase activity. Cellulase, pectin lyase, and pectin methyl esterase activities were noted with both heated and unheated ECM preparations. Proteinase activity was not detected.  相似文献   

6.
Crude cell-free preparations of Botrytis cinerea were found to oxidize straight-chain primary alcohols (except methanol), aromatic primary alcohols, and unsaturated primary alcohols. The resulting products were the corresponding aldehydes and an equal molar quantity of hydrogen peroxide.  相似文献   

7.
B. cinerea produces extracellular acid proteinases: aspartic proteinase and carboxypeptidase, separable on CM-Sepharose CL-6B. Aspartic proteinase showed the maximum activity at pH 2.5-3.0, was inactivated by diazoacetyl-DL-norleucine methyl ester and was unable to hydrolyse carbobenzoxy Glu-Tyr. Carboxypeptidase showed the maximum activity at pH 4.7-5.0, was inactivated by diisopropyl fluorophosphate, and carbobenzoxy-Glu-Tyr served as an efficient enzyme substrate. The isolated aspartic proteinase hydrolysed proteins in the preparations of apple cell walls. Excretion of aspartic proteinase by B. cinerea preceded that of carboxypeptidase.  相似文献   

8.
Bioconversion of alpha-damascone (compound 1) was studied with four strains of Botrytis cinerea in grape must (pH 3.2). As biotransformation products of compound 1, 3-oxo-alpha-damascone, cis- and trans-3-hydroxy-alpha-damascone, gamma-damascenone, 3-oxo-8, 9-dihydro-alpha-damascone, and cis- and trans-3-hydroxy-8,9-dihydro-alpha-damascone were identified. In addition, acid-catalyzed chemical transformation of compound 1 to the diastereomers of 9-hydroxy-8,9-dihydro-alpha-damascone was observed. Identifications were performed by capillary gas chromatography (HRGC) and coupled HRGC techniques, i.e., on-line HRGC-mass spectrometry and HRGC-Fourier transform infrared spectroscopy, after extractive sample preparation.  相似文献   

9.
Summary Bioconversion of citronellol 1 was studied with four strains of Botrytis cinerea. Using grape must predominant transformation of 1 to 2,6-dimethyl-1,8-octandiol 2 and (E)-2,6-dimethyl-2-octen-1,8-diol 3 was observed. In minor amounts 2,6-dimethyl-2,8-octandiol 4, two p-menthan-3,8-diol isomers 5a, 5b, (Z)-2,6-dimethyl-2-octen-1,8-diol 6, isopulegol 7, 2-methyl-2-hepten-6-one-1-ol 8 and 2-methyl--butyrolactone 9 were found. Using a small amount of grape must in a synthetic medium (1:700) the bioconversion products 2, 4, 5a and 5b were absent, but additionally 2-methyl-2-hepten-6-one 10, 2-methyl-2-hepten-6-ol 11 and citronellic acid 12 were detected. The results obtained were strongly dependent on the strains used; one strain did not show any metabolic activity against 1. The bioconversion products were identified by capillary gas chromatography (HRGC) and coupled HRGC techniques, i.e. on-line — mass spectrometry (HRGC-MS) and — Fourier transform infrared spectroscopy (HRGC-FTIR).  相似文献   

10.
11.
1,3-beta-D-glucans (glucans) are structural elements in the cell walls of yeast and fungi with immunomodulatory properties, mediated through their ability to activate macrophages. This study assessed the activation of cells of the peritoneal cavity between 3 and 90 days after i.p. injection of particulate yeast glucan differing in molecular weight (MW) and degree of (1,6)-linkages. Female QS mice, 7-9 weeks of age, were injected, i.p., with varying doses of low (< 5 x 10(5)), medium (1-2 x 10(6)) or high (> 3 x 10(6)) MW glucans, all with low (< 5%) beta-(1,6)-linkages, or high MW (> 3 x 10(6)) glucan with high 1,6-linkages (> 20%). All glucans induced a transient increase in the proportion of neutrophils and eosinophils and a reduction in mast cell numbers in the peritoneal cavity. Peritoneal macrophages showed an altered morphology, increased intracellular acid phosphatase, increased LPS-stimulated NO production and increased PMA-stimulated superoxide production. There were no significant changes in serum lysozyme levels. Most macrophage activities returned to control levels by 28 days post injection of 1, 3-beta-D-glucan. There was a trend for higher MW or (1,6)-linked, (1, 3)-beta-D-glucans to be more stimulatory. It was concluded that particulate yeast (1,3)-beta-D-glucan is an effective stimulator of immune function, the efficiency of which may be influenced by the MW and degree of (1,6)-linkages.  相似文献   

12.
Pichia membranifaciens strain FY-101, isolated from grape skin, was found to be antagonistic to Botrytis cinerea, the causal organism of the grey mold disease of the grapevine. When grown together on solid as well as in liquid media, the yeast brings about the inhibition of Botrytis cinerea, which in turn loses its ability to produce the grey mold symptoms on the grapevine plantlets. The secretion of β-1,3-glucanases by P. membranifaciens is one of the possible mechanisms related to this antagonism. In vitro experiments confirm that this yeast can be used as a biological control organism against B. cinerea. An account of this antagonism and the production of β-1,3-glucanases by P. membranifaciens is given here. Received: 16 July 2001 / Accepted: 14 September 2001  相似文献   

13.
In our previous in vivo 31P study of intact nitrogen-fixing nodules (Rolin, D.B., Boswell, R.T., Sloger, C., Tu, S.I. and Pfeffer, P.E., 1989 Plant Physiol. 89, 1238-1246), we observed an unknown phosphodiester. The compound was also observed in the spectra of isolated bacteroids as well as extracts of the colonizing Bradyrhizobium japonicum USDA 110. In order to characterize the phosphodiester in the present study, we took advantage of the relatively hydrophobic nature of the material and purified it by elution from a C-18 silica reverse-phase chromatography column followed by final separation on an aminopropyl silica HPLC column. Structural characterization of this compound with a molecular weight of 2271 (FAB mass spectrometry), using 13C-1H and 31P-1H heteronuclear 2D COSY and double quantum 2D phase sensitive homonuclear 1H COSY NMR spectra, demonstrated that the molecule contained beta-(1,3); beta-(1,6); beta-(1,3,6) and beta-linked non-reducing terminal glucose units in the ratio of 5:6:1:1, respectively, as well as one C-6 substituted phosphocholine (PC) moiety associated with one group of (1,3) beta-glucose residues. Carbohydrate degradation analysis indicated that this material was a macrocyclic glucan, (absence of a reducing end group) with two separated units containing three consecutively linked beta-(1,3) glucose residues and 6 beta-(1,6) glucose residues. The sequences of beta-(1,3)-linked glucose units contained a single non-reducing, terminal, unsubstituted glucose linked at the C-6 position and a PC group attached primarily to an unsubstituted C-6 position of a beta-(1,3)-linked glucose.  相似文献   

14.
The effect of oryzalexin D, which has been isolated as a group of novel phytoalexins of rice plant, on DNA, RNA, protein, lipid and chitin biosyntheses, respiration and cell membrane permeability was investigated in Pyricularia oryzae. The concentration for 50% inhibition (ED50) by oryzalexin D of the mycelial growth of P. oryzae was 230 ppm. At this concentration, oryzalexin D inhibited equally the incorporation of [2–14C]thymidine, [2–14C]uridine, l-[U-14C]amino acid mixture, l-[methyl-14C]methionine and d-[l-14C]glucosamine into DNA, RNA, protein, lipid and chitin in intact cells, but did not inhibit these systems in a homogenate of the mycelia of P. oryzae. Oryzalexin D scarcely inhibited the respiration of the homogenate and mitochondria at ED50. On the other hand, oryzalexin D at ED50 caused leakage of potassium and inhibited the uptake of glutamate by mycelial cells of P. oryzae. These results suggest that interference with the cell membrane function is responsible for the primary mode of action.of oryzalexin D against P. oryzae.  相似文献   

15.
Aims: To develop a sensitive, rapid and simple method for detection of Botrytis cinerea based on loop‐mediated isothermal amplification (LAMP) that would be suitable for use outside a conventional laboratory setting. Methods and Results: A LAMP assay was designed based on the intergenic spacer of the B. cinerea nuclear ribosomal DNA (rDNA). The resulting assay was characterized in terms of sensitivity and specificity using DNA extracted from cultures. The assay consistently amplified 65 pg B. cinerea DNA. No cross‐reactivity was observed with a range of other fungal pathogens, with the exception of the closely related species Botrytis pelargonii. Use of a novel real‐time LAMP platform (the OptiGene Genie I) allowed detection of B. cinerea in infected rose petals, with amplification occurring in <15 min. Conclusions: The LAMP assay that was developed is suitable for rapid detection of B. cinerea in infected plant material. Significance and Impact of the Study: The LAMP method combines the sensitivity and specificity of nucleic acid‐based methods with simplified equipment and a reduced reaction time. These features make the method potentially suitable for on‐site use, where the results of testing could help to inform decisions regarding the storage and processing of commodities affected by B. cinerea, such as cut flowers, fruit and vegetables.  相似文献   

16.
17.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

18.
The basidiomycete QM 806 excreted large amounts of beta-1,3-glucanase into the culture medium. Synthesis and excretion of the enzyme were triggered by a critically low concentration of carbon source. The extracellular beta-1,3-glucanase exhibited a remarkable stability. Addition of glucose or other carbon sources to a culture after consumption of the initial carbon source led to an inactivation of the extracellular beta-1,3-glucanase by an inactivating system, which could be separated from the cells. The inactivation of beta-1,3-glucanse was prevented by cycloheximide. This indicates the necessity of active protein synthesis for the inactivation process but does not prove that the inactivating system itself is a protein. Marked changes in the electrophoretic mobility and immunological properties of beta-1,3-glucanase indicate rather profound alterations of the enzyme protein in the course of inactivation.  相似文献   

19.
20.
Recently we reported the molecular cloning and characterization of a novel beta-1,3-xylanase from the marine bacterium Vibrio sp. AX-4 [Kiyohara et al. (2005) Biochem. J. 388, 949-957]. We report here the structural analysis of oligosaccharides generated from beta-1,3-xylan of a siphonous green alga, Caulerpa racemosa var. laete-virens, by the action of beta-1,3-xylanase. The enzyme degraded the polysaccharide producing oligosaccharides with different R(f)s on TLC (EX2-EX5). Sugar component, linkage, and MALDI-TOF-MS analyses revealed that EX2 and EX3 were Xyl-1,3-Xyl and Xyl-1,3-Xyl-1,3-Xyl, respectively. On the other hand, EX4 was a mixture of Glc-1,3-Xyl-1,3-Xyl, Xyl-1,4-Xyl-1,3-Xyl and Xyl-1,3-Xyl-1,4-Xyl, while EX5 was a mixture of tetra-saccharides containing 3-substitued Glc in addition to the same components of EX4. Branching was not likely present in EXOs prepared from the polysaccharide by the enzyme. These results strongly suggest that the C. racemosa beta-1,3-xylan is a linear heteropolysaccharide containing 1,3-Glc and 1,4-Xyl both of which are thought to be located within a beta-1,3-Xyl chain and linked via covalent bonds. This report indicates the usefulness of the enzyme for the structural analysis of beta-1,3-xylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号