首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 23 intact core segments was obtained from two distinct deep subsurface geological formations, the Middendorf and the Cape Fear formations, underlying the southeastern coastal plain of South Carolina. The Middendorf formation in this region consists of permeable, saturated, sandy sediments; the Cape Fear formation consists mainly of less permeable sediments. The core segments were separated by vertical distances ranging from several centimeters to 48 m. Aerobic chemoheterotrophic bacteria were enumerated on a dilute medium, and populations ranged from 3.1 to 6.4 log CFU g of sediment-1 in the Middendorf cores and from below detection to 4.3 log CFU g-1 in the Cape Fear cores. A total of 198 morphologically distinct colony types were isolated, purified, and subjected to 108 different physiological measurements. The isolates from the two formations were distinct (i.e., they produced substantially different response patterns to the various physiological measurements), as were those in different core samples from the same formation. Cluster analysis revealed 21 different biotypes based on similarities of 75% or higher in response patterns to 21 physiological assays. One biotype contained 57 (29%) of the subsurface isolates, 10 biotypes contained 5 or more isolates, and the remainder had 4 or fewer. The organic compounds that were most commonly metabolized by the subsurface bacteria included Tween 40 (85%) and β-hydroxybutyric acid (60%). Organic acids, in general, were also commonly metabolized by the subsurface bacteria. Isolates from the Cape Fear core segments were capable of metabolizing a higher percentage of the substrates than were bacteria isolated from the Middendorf formation. Although the heterogeneous distributions of bacteria in deep subsurface sediments may make it difficult to use aquifer microcosms to predict in situ biotransformation rates, the diversity of the physiological properties of these organisms offers promise for in situ remediation of contaminants.  相似文献   

2.
The distribution of microorganisms in deep subsurface profiles was determined at three sites at the Savannah River Plant, Aiken, South Carolina. Acridine orange direct counts (AODC) of bacteria were highest in surface soil samples and declined to the 106 to 107 per gram range in the subsurface, but then did not decline further with depth. In the subsurface, AODC values varied from layer to layer, the highest being found in samples from sandy aquifer formations and the lowest in clayey interbed layers. Sandy aquifer sediments also contained the highest numbers of viable bacteria as determined by aerobic spread plate counts (CFU) on a dilute heterotrophic medium. In some of these samples bacterial CFU values approached 100% of the AODC values. Viable protozoa (amoebae and flagellates, but no ciliates) were found in samples with high bacterial CFU values. A variety of green algae, phytoflagellates, diatoms, and a few cyanobacteria were found at low population densities in samples from two of the three boreholes. Low numbers of fungi were evenly distributed throughout the profiles at all three sites. Microbial population density estimates correlated positively with sand content and pore‐water pH, and negatively with clay content and pore‐water metal concentration. A large diversity of prokaryotic and eukaryotic microorganisms was found in samples with high population densities. A survey of bacterial strains isolated from subsurface samples revealed associations of gram‐positive bacteria with high clay sediments and gram‐negative bacteria with sandy sediments. The ability to deposit lipophilic storage material (presumably poly‐ß‐hydroxybutyrate) was found in a high proportion of isolates from sandy sediments, but only rarely in isolates from high clay sediments.  相似文献   

3.
Plasmid Incidence in Bacteria from Deep Subsurface Sediments   总被引:12,自引:7,他引:5       下载免费PDF全文
Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu2+, Cr3+, and Hg2+ for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of β-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.  相似文献   

4.
Subsurface sediment samples, collected from three boreholes ranging in depths from 0.1 to 260 m, were used in substrate mineralization studies to examine the aerobic metabolic potential of microbial populations indigenous to the deep subsurface. Mineralization was measured by quantifying the amount of 14CO2 released from radiolabeled acetate, phenol, or 4‐methoxybenzoate added to subsurface sediments at 10 μg g‐1. Mineralization of the three compounds was observed in all but a few of the subsurface samples and did not decrease with depth. In addition, mineralization data collected from similar geologic formations from the different boreholes indicated that there was significant lateral continuity of microbial activity. Regression analyses were performed to determine which environmental factors were related to microbial metabolic potential. Mineralization was positively correlated with heterotrophic abundance as measured by plate counts. Other parameters that appeared to influence metabolic potential included pH and clay content.  相似文献   

5.
The aerobic, chemoheterotrophic bacteria indigenous to deep aquifers and other subsurface sediments (depths to 265 m) at a site in South Carolina were characterized by direct microscopy, enumeration of viable cells, analysis of colony morphologies on plates, and analysis of cell morphologies of isolated strains. Substantial numbers of viable bacteria (105‐108/g) were present in all transmissive, aquifer sediments, and their numbers did not decrease with depth. Fewer bacteria (<103/g) were detected in nontransmissive, confining layers. The highest viable counts were obtained on dilute media, but 10–50% of the bacteria in most aquifer sediments also grew rapidly on concentrated, nutrient‐rich media (indicating a high degree of metabolic flexibility). Most of the bacteria were mesophilic; relatively few psychrophiles or thermophiles were detected (<103/g; in many cases, none). The bacterial flora was diverse (11–62 distinct colony types on enumeration plates of most aquifer sediments). Diversity did not decrease with depth, but the composition of the microflora (based on colony analysis) varied extensively from one geological formation to another. Almost 95% of the platable colonies that grew on enumeration plates contained nonstreptomycete bacteria, more than 80% of which were gram‐negative rods. Light microscopy of films released from aquifer sediments by flotation revealed the presence of dividing cells and microcolonies, thus implying that the in situ deep aquifer microflora was more metabolically active than that seen previously in shallow aquifers.  相似文献   

6.
Subsurface sediments obtained from three cores drilled to depths of 260 m below the surface in South Carolina were analyzed for heterotrophic bacteria; N2‐fixing microaerophiles; and nitrifying, sulfur‐oxidizing, and H2‐oxidizing lithotrophic bacteria. In addition, pore waters were extracted for chemical analysis of inorganic nitrogen species, sulfate, dissolved organic carbon, pH, and Eh. Autotroph populations were generally less than 103 most probable number (MPN) g‐1 dry sediment with sulfur‐oxidizing bacteria, detected in 60% of the sediment samples, being the most frequently encountered group. Nitrifying bacteria were detected mainly in sediments from one borehole (P28), and their populations in those sediments were correlated with pore‐water ammonium concentrations. Populations of heterotrophic bacteria in 60% of the sediments were greater than 106 colony forming units (CFU) g‐1 dry sediment and were typically lower in sediments of high clay content and low pH. Microaerophilic N2‐fixing bacteria were cultured from >50% and bacteria capable of growth on H2 were cultured from 35% of the subsurface sediments examined. Sediment texture, which controls porosity, water potential, and hydraulic conductivity, appears to be a major factor influencing microbial populations in coastal plain subsurface sediments.  相似文献   

7.
Abstract Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments (∼5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2‰) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones. Received: 10 November 1997; Accepted: 10 February 1998  相似文献   

8.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 10(3)- and 10(4)-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

9.
Abstract

Microbial community structure reflects the surrounding natural environment and changes to that environment. Although the subsurface at 5–100?m depth is important for human activities and there are potential risks of environmental pollution in this region, there have been only a few reports of subsurface microbial community structures in terrestrial areas. We investigated the diversity and community compositions of Bacteria and Archaea in boring cores collected from various depths at three different sites in the southern Kanto Plain, Japan. The results of 16S rRNA gene amplicon sequencing using MiSeq showed that the microbial community composition varied with the geological unit. Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) were dominant members within sediments accumulated during the Pleistocene in the Musashino Upland. In contrast, Acidobacteria and Chloroflexi characteristically appeared in the Holocene layers of the Arakawa Lowland. These data suggest that the subsurface microbial composition is controlled by the geological features of the sediments.  相似文献   

10.
Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52?m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>?700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.  相似文献   

11.
Molecular analysis of deep-subsurface bacteria.   总被引:5,自引:5,他引:0       下载免费PDF全文
Bacterial isolates from deep-sediment samples from three sites at the Savannah River site, near Aiken, S.C., were studied to determine their microbial community composition and DNA structure by using total DNA hybridization and moles percent G + C. Standard phenotypic identification underestimated the bacterial diversity at the three sites, since isolates with the same phenotype had different DNA structures in terms of moles percent G + C and DNA homology. The G + C content of deep-subsurface bacteria ranged from 20 to 77 mol%. More than 60% of the isolates tested had G + C values similar to those of Pseudomonas spp., and 12% had values similar to those of Acinetobacter spp. No isolates from deeper formations showed the same DNA composition as isolates from upper formations. Total-DNA hybridization and DNA base composition analysis provided a better resolution than phenotypic tests for the understanding of the diversity and structure of deep-subsurface bacterial communities. On the basis of the moles percent G + C values, deep-subsurface isolates tested seemed to belong to the families Pseudomonadaceae and Neisseriaceae, which might reflect a long period of adaptation to the environmental conditions of the deep subsurface.  相似文献   

12.
Bacterial isolates from deep-sediment samples from three sites at the Savannah River site, near Aiken, S.C., were studied to determine their microbial community composition and DNA structure by using total DNA hybridization and moles percent G + C. Standard phenotypic identification underestimated the bacterial diversity at the three sites, since isolates with the same phenotype had different DNA structures in terms of moles percent G + C and DNA homology. The G + C content of deep-subsurface bacteria ranged from 20 to 77 mol%. More than 60% of the isolates tested had G + C values similar to those of Pseudomonas spp., and 12% had values similar to those of Acinetobacter spp. No isolates from deeper formations showed the same DNA composition as isolates from upper formations. Total-DNA hybridization and DNA base composition analysis provided a better resolution than phenotypic tests for the understanding of the diversity and structure of deep-subsurface bacterial communities. On the basis of the moles percent G + C values, deep-subsurface isolates tested seemed to belong to the families Pseudomonadaceae and Neisseriaceae, which might reflect a long period of adaptation to the environmental conditions of the deep subsurface.  相似文献   

13.
Newly described phylogenetic lineages within the domain Archaea have recently been found to be significant components of marine picoplankton assemblages. To better understand the ecology of these microorganisms, we investigated the relative abundance, distribution, and phylogenetic composition of Archaea in the Santa Barbara Channel. Significant amounts of archaeal rRNA and rDNA (genes coding for rRNA) were detected in all samples analyzed. The relative abundance of archaeal rRNA as measured by quantitative oligonucleotide hybridization experiments was low in surface waters but reached higher values (20 to 30% of prokaryotic rRNA) at depths below 100 m. Probes were developed for the two major groups of marine Archaea detected. rRNA originating from the euryarchaeal group (group II) was most abundant in surface waters, whereas rRNA from the crenarchaeal group (group I) dominated at depth. Clone libraries of PCR-amplified archaeal rRNA genes were constructed with samples from 0 and 200 m deep. Screening of libraries by hybridization with specific oligonucleotide probes, as well as subsequent sequencing of the cloned genes, indicated that virtually all archaeal rDNA clones recovered belonged to one of the two groups. The recovery of cloned rDNA sequence types in depth profiles exhibited the same trends as were observed in quantitative rRNA hybridization experiments. One representative of each of 18 distinct restriction fragment length polymorphism types was partially sequenced. Recovered sequences spanned most of the previously reported phylogenetic diversity detected in planktonic crenarchaeal and euryarchaeal groups. Several rDNA sequences appeared to be harbored in archaeal types which are widely distributed in marine coastal waters. In total, data suggest that marine planktonic crenarchaea and euryarchaea of temperate coastal habitats thrive in different zones of the water column. The relative rRNA abundance of the crenarchaeal group suggests that its members constitute a significant fraction of the prokaryotic biomass in subsurface coastal waters.  相似文献   

14.
AIMS: To determine the levels and species distribution of enterococci in intertidal and marine sediments and coastal waters at two beaches frequently in violation of bacterial water standards. METHODS AND RESULTS: Faecal indicator bacteria were extracted from sediment and enumerated using membrane filtration. High levels of enterococci were detected in intertidal sediments in a seasonal river and near a storm drain outlet. Low levels were found in marine sediments at 10 m depths and in surf zone sand. Bacterial isolates presumptively identified as Enterococcus on mEI media were speciated. The predominant species found in both water and sediment included Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus mundtii. A number of isolates (11-26%) from regulatory water samples presumptively identified as enterococci on mEI media were subsequently identified as species other than Enterococcus. At both study sites, the distribution of species present in water was comparable with those in sediments and the distribution of species was similar in water samples passing and exceeding bacterial indicator standards. CONCLUSIONS: High levels of Enterococcus in intertidal sediments indicate retention and possible regrowth in this environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Resuspension of enterococci that are persistent in sediments may cause beach water quality failures and calls into question the specificity of this indicator for determining recent faecal contamination.  相似文献   

15.
Dissimilatory nitrate reduction (denitrification) in subsurface sediments by indigenous microflora was investigated in samples obtained over a range of depths from 0 to 289 m. Denitrifying activity in sediment samples retrieved from similar stratigraphic horizons at four different sites was determined by measuring the accumulation of N2O using the acetylene blockage technique. Denitrification was detected in unamended samples which received only prereduced deionized water at almost all depths in all sediments sampled. The surface sediments showed the highest denitrification activity. In the deeper sediments, denitrifying activity was much higher in saturated sandy samples and lower or absent in drier clay samples. Addition of nitrate enhanced denitrification activity in all samples from below the water table down to the maximum depth sampled (289 m), while addition of a carbon (succinate) source in general had no stimulatory effect. These results show that denitrifying microorganisms were present in all of the deep subsurface sediments tested in this study. Furthermore, these results suggest that adequate supplies of metabolizable organic carbon were available to support denitrifying activity. However, denitrification may be limited by inadequate supplies of nitrate in the sediments.  相似文献   

16.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

17.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

18.
Four areas containing different cell morphologies were mapped on Porphyra blades and five different cell types (i.e. tapered with long extensions, large and vacuolated, vegetative and dividing, and reproductive: males and females) were identified in them. Tissues from these areas were dissociated, and protoplasts and single cells were isolated from the dissociated tissue of each distinct region. Regeneration rates of the isolated cells and protoplasts (isolates) varied depending on their morphological type. Regeneration rates were lowest in cultured isolates from the area just above the holdfast (ca. 1 %) and increased gradually to over 80% in isolates from areas of vegetative and reproductive regions away from the holdfast. Four distinct morphological patterns were observed among the regenerating plants. Cells isolated from vegetative areas developed into leafy plants while in liquid culture, and into calli when grown on solid medium. Isolates from reproductive areas developed into either a long thin or short thick filamentous plant. Those from ripe patches of carposporangia developed into thin conchocelis filaments, while isolates from non-differentiated cells bordering the ripe reproductive patches developed into thick filaments resembling the morphology of conchosporangial branches. The blade of Porphyra appears simple as it consists of a single cell layer; however, it is complex both morphologically and physiologically.  相似文献   

19.
We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68 degrees C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O(2) and oxygenic photosynthesis demonstrated the existence of physiologically distinct Synechococcus populations at different depths along a light gradient quantified by scalar irradiance microprobes. Molecular methods were used to evaluate whether physiologically distinct populations could be correlated with genetically distinct populations over the vertical interval. We were unable to identify patterns in genetic variation in Synechococcus 16S rRNA sequences that correlate with different vertically distributed populations. However, patterns of variation at the internal transcribed spacer locus separating 16S and 23S rRNA genes suggested the existence of closely related but genetically distinct populations corresponding to different functional populations occurring at different depths.  相似文献   

20.
《L'Anthropologie》2021,125(2):102858
In this paper sediments accumulated between 20 and 4 ky BP on the Israeli coastal plain and their cultural contents are described. Sediments carried by the Nile River into the Mediterranean are transported northward along the Levant coast. These sediments are intermittently windblown on land and together with their derivative sandy loams form the bulk of sediments on the coastal plain of Israel. The younger these sediments are further west they are located. The sand beds apparently accumulated during cold and dry periods and pedogenesis occurred during warm and humid periods. Cultural remains on the coastal plain are encountered only in the soils. Hence in periods of sand transport humans avoided the coastal plain. Between the Last Glacial Maximum (LGM, ca. 18–20 ky BP) and about 4 ky BP, global sea level rose from −130 to 0 m. The coastal sediments accumulated during that period are here correlated with both sea level and climatic factors. From the last glacial the living space was continuously shrinking under the encroaching sea and human communities were continuously driven landward. Cultural evolution since 20 ky ago includes major leaps such as the move from hunting-gathering nomads to permanent, year-round settlements, the birth of religion, domestication and food production. Climatic events seemingly played a minor role in these leaps. They were apparently initiated by social factors possibly stemming from environmental constraints – the progressive loss of living space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号