首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a “Gleasonian” perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.  相似文献   

2.
Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils.  相似文献   

3.
The overall conformations of regulated myosins or heavy meromyosins from chicken/turkey, scallop, tarantula, limulus, and scorpion sources have been studied by a number of techniques, including electron microscopy, sedimentation, and pulsed electron paramagnetic resonance. These studies have indicated that the binding of regulatory ions changes the conformation of the molecule from a compact shape found in the “off” state of the muscle to extended relationships between the tail and independently mobile heads that predominate in the “on” state. Here we strengthen the argument for the generality of this conformational change by using small angle X-ray scattering on heavy meromyosin from squid. Small angle X-ray scattering allows the protein to be visualized in solution under mild and relatively physiological conditions, and squid differs from the other species studied by at least 500 million years of evolution. Analysis of the data indicates that upon addition of Ca2+ the radius of gyration increases. Differences in the squid “on” and “off” states are clearly distinguishable as bimodal and unimodal pair distance distribution functions respectively. These observations are consistent with a Ca2+-free squid heavy meromyosin that is compact, but which becomes extended when Ca2+ is bound. Further, the scattering profile derived from the current model of tarantula heavy meromyosin in the “off” state is in excellent agreement with the measured “off” state scattering profile for squid heavy meromyosin. The previous and current studies together provide significant evidence that regulated myosin''s compact off-state conformation is an ancient trait, inherited from a common ancestor during divergent evolution.  相似文献   

4.
So far inferences on early moral development and higher order self conscious emotions have mostly been based on behavioral data. Emotions though, as far as arguments support, are multidimensional notions. Not only do they involve behavioral actions upon perception of an event, but they also carry autonomic physiological markers. The current study aimed to examine and characterise physiological signs that underlie self-conscious emotions in early childhood, while grounding them on behavioral analyses. For this purpose, the “mishap paradigm” was used as the most reliable method for evoking feelings of “guilt” in children and autonomic facial temperature variation were detected by functional Infrared Imaging (fIRI). Fifteen children (age: 39–42 months) participated in the study. They were asked to play with a toy, falsely informed that it was the experimenter''s “favourite”, while being unaware that it was pre-planned to break. Mishap of the toy during engagement caused sympathetic arousal as shown by peripheral nasal vasoconstriction leading to a marked temperature drop, compared to baseline. Soothing after the mishap phase induced an increase in nose temperature, associated with parasympathetic activity suggesting that the child''s distress was neutralized, or even overcompensated. Behavioral analyses reported signs of distress evoked by the paradigm, backing up the thermal observation. The results suggest that the integration of physiological elements should be crucial in research concerning socio-emotional development. fIRI is a non invasive and non contact method providing a powerful tool for inferring early moral emotional signs based on physiological observations of peripheral vasoconstriction, while preserving an ecological and natural context.  相似文献   

5.
Utilizing Escherichia coli as the prototype of an ion-accumulating cell, the ion exchange isotherm is introduced as a concise method of characterizing biological ion exchange events. The ion exchange isotherm for the alkali cation exchange, K ↔ Na, is described. The total charge profile of this bacterium is compiled and compared for bacteria in the Na form and in the K form. Macromolecule fixed charge was found to provide 80% of the counter ions that pair with potassium. Therefore, in its physiological state, 80% of the cell potassium in E. coli is associated with an ion exchange site on a macromolecule. The primary cation exchange sites are found to be about equally divided between carboxylate and phosphate sites indicating that E. coli is a bifunctional resin with respect to cation exchange. During substrate-dependent cation accumulation (“active transport”), phosphate esters and organic acids were shown to accumulate. One may conclude that the role of intermediate metabolism in “active transport” is to increase the ion exchange capacity of the biological resin by the production of charged metabolites that sorb to the framework of the resin.  相似文献   

6.
Soybean seeds which had aged in long-term storage (“natural aging”) or by exposure to high temperature and humidity (“accelerated aging”) were analyzed for their tocopherol and organic free radical contents. Tocopherol levels remained unchanged during both types of aging. Three principal tocopherol homologues (α, γ, δ) were present in fairly constant proportions throughout. Organic free radical levels were also remarkably stable, presumably due to the relatively immobile environment of the dry seed. These results, taken in conjunction with previous data on the stability of unsaturated fatty acids in soybean seeds, indicate that it is improbable that lipid peroxidation need play a significant role during natural or accelerated aging in this species.  相似文献   

7.
Presence of glycogen granules in anaerobic ammonium-oxidizing (anammox) bacteria has been reported so far. However, very little is known about their glycogen metabolism and the exact roles. Here, we studied the glycogen metabolism in “Ca. Brocadia sinica” growing in continuous retentostat cultures with bicarbonate as a carbon source. The effect of the culture growth phase was investigated. During the growing phase, intracellular glycogen content increased up to 32.6 mg-glucose (g-biomass dry wt)−1 while the specific growth rate and ATP/ADP ratio decreased. The accumulated glycogen begun to decrease at the onset of entering the near-zero growth phase and was consumed rapidly when substrates were depleted. This clearly indicates that glycogen was synthesized and utilized as an energy storage. The proteomic analysis revealed that “Ca. B. sinica” synthesized glycogen via three known glycogen biosynthesis pathways and simultaneously degraded during the progress of active anammox, implying that glycogen is being continuously recycled. When cells were starved, a part of stored glycogen was converted to trehalose, a potential stress protectant. This suggests that glycogen serves at least as a primary carbon source of trehalose synthesis for survival. This study provides the first physiological evidence of glycogen metabolism in anammox bacteria and its significance in survival under natural substrate-limited habitat.Subject terms: Applied microbiology, Water microbiology  相似文献   

8.
Most heterotrophic bacteria assimilate CO2 in various carboxylation reactions during biosynthesis. In this study, assimilation of 14CO2 by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient 14CO2 during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of 14C-labeled organic substrates. Experiments with E. coli showed that 14CO2 was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO2-MAR, was evaluated by targeting metabolic active filamentous bacteria, including “Candidatus Microthrix parvicella” in activated sludge. “Ca. Microthrix parvicella” was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [14C]oleic acid. However, the new HetCO2-MAR approach indicated that “Ca. Microthrix parvicella,” did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO2, whereas the addition of O2 or NO3 initiated growth, as indicated by detectable 14CO2 assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO2-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO2-MAR results were supported by stable isotope analysis of 13C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of 13CO2. In conclusion, the novel HetCO2-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

9.
Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal’s natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an “entice to stay” model) or from aversive stimulus-input (a “repel to leave” model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in “entice to stay” model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.  相似文献   

10.
Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella’s rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the “brake component” in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each “brake component” were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the “brake component”. Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate “brake component” in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.  相似文献   

11.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ~700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

12.
Microcosms capable of reductive dechlorination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were constructed in glass bottles by seeding them with a polluted river sediment and incubating them anaerobically with an organic medium. All of the PCDD/F congeners detected were equally reduced without the accumulation of significant amounts of less-chlorinated congeners as the intermediate or end products. Alternatively, large amounts of catechol and salicylic acid were produced in the upper aqueous phase. Thus, the dechlorination of PCDD/Fs and the oxidative degradation of the dechlorinated products seemed to take place simultaneously in the microcosm. Denaturing gel gradient electrophoresis and clone library analyses of PCR-amplified 16S rRNA genes from the microcosm showed that members of the phyla Firmicutes, Proteobacteria, and Bacteroidetes predominated. A significant number of Chloroflexi clones were also detected. Quantitative real-time PCR with specific primer sets showed that the 16S rRNA genes of a putative dechlorinator, “Dehalococcoides,” and its relatives accounted for 0.1% of the total rRNA gene copies of the microcosm. Most of the clones thus obtained formed a cluster distinct from the typical “Dehalococcoides” group. Quinone profiling indicated that ubiquinones accounted for 18 to 25% of the total quinone content, suggesting the coexistence and activity of ubiquinone-containing aerobic bacteria. These results suggest that the apparent complete dechlorination of PCDD/Fs found in the microcosm was due to a combination of the dechlorinating activity of the “Dehalococcoides”-like organisms and the oxidative degradation of the dechlorinated products by aerobic bacteria with aromatic hydrocarbon dioxygenases.  相似文献   

13.
Marine Planktonic Archaea Take Up Amino Acids   总被引:12,自引:5,他引:7       下载免费PDF全文
Archaea are traditionally thought of as “extremophiles,” but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17°C, dark and anaerobic) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water.  相似文献   

14.
Carbon-starved cultures of strain Ant-300, a psychrophilic marine vibrio isolated from the Antarctic Convergence, were compared with their nonstarved counterparts for resistance to heat. Specifically, starved and unstarved cells were exposed to 17°C, which is 4°C above the maximum growth temperature, and compared with cells maintained at the optimum temperature (5 to 7°C). Total cell counts, direct viable-cell counts, and plate counts were monitored. At a temperature of 17°C, viability (as indicated by plate counts) was lost within 40 h, with direct viable-cell counts indicating less than 5% viability at this time. However, when cells were carbon starved for 1 week prior to heat challenge, significant plateability was maintained for more than 6 days; direct viable-cell counts of starved cells maintained at 17°C indicated the presence of viable cells for at least 12 days. Because starvation is the normal physiological state of copiotrophic, heterotrophic bacteria in oligotrophic marine waters, these data suggest that starvation conditions may be a significant factor in providing heat tolerance to psychrophiles.  相似文献   

15.
Staphylococcus epidermidis is a skin-resident bacterium and a major cause of biomaterial-associated infections. The transition from residing on the skin to residing on an implanted biomaterial is accompanied by regulatory changes that facilitate bacterial survival in the new environment. These regulatory changes are dependent upon the ability of bacteria to “sense” environmental changes. In S. epidermidis, disparate environmental signals can affect synthesis of the biofilm matrix polysaccharide intercellular adhesin (PIA). Previously, we demonstrated that PIA biosynthesis is regulated by tricarboxylic acid (TCA) cycle activity. The observations that very different environmental signals result in a common phenotype (i.e. increased PIA synthesis) and that TCA cycle activity regulates PIA biosynthesis led us to hypothesize that S. epidermidis is “sensing” disparate environmental signals through the modulation of TCA cycle activity. In this study, we used NMR metabolomics to demonstrate that divergent environmental signals are transduced into common metabolomic changes that are “sensed” by metabolite-responsive regulators, such as CcpA, to affect PIA biosynthesis. These data clarify one mechanism by which very different environmental signals cause common phenotypic changes. In addition, due to the frequency of the TCA cycle in diverse genera of bacteria and the intrinsic properties of TCA cycle enzymes, it is likely the TCA cycle acts as a signal transduction pathway in many bacteria.  相似文献   

16.
Use of socially generated “big data” to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society''s reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between “real time monitoring” and “early predicting” remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.  相似文献   

17.
18.
Automatism     
R. J. McCaldon 《CMAJ》1964,91(17):914-920
Individuals can carry out complex activity while in a state of impaired consciousness, a condition termed “automatism”. Consciousness must be considered from both an organic and a psychological aspect, because impairment of consciousness may occur in both ways. Automatism may be classified as normal (hypnosis), organic (temporal lobe epilepsy), psychogenic (dissociative fugue) or feigned. Often painstaking clinical investigation is necessary to clarify the diagnosis. There is legal precedent for assuming that all crimes must embody both consciousness and will. Jurists are loath to apply this principle without reservation, as this would necessitate acquittal and release of potentially dangerous individuals. However, with the sole exception of the defence of insanity, there is at present no legislation to prohibit release without further investigation of anyone acquitted of a crime on the grounds of “automatism”.  相似文献   

19.
The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.  相似文献   

20.
The circadian clock is considered a central “orchestrator” of gene expression and metabolism. Concomitantly, the circadian clock is considered of negligible influence in the field and beyond leaf levels, where direct physiological responses to environmental cues are considered the main drivers of diel fluctuations. I propose to bridge the gap across scales by examining current evidence on whether circadian rhythmicity in gas exchange is relevant for field settings and at the ecosystem scale. Nocturnal stomatal conductance and water fluxes appear to be influenced by a “hard” clock that may override the direct physiological responses to the environment. Tests on potential clock controls over photosynthetic carbon assimilation and daytime transpiration are scant yet, if present, could have a large impact on our current understanding and modeling of the exchanges of carbon dioxide and water between terrestrial ecosystems and the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号