首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reexamined the "uncoupling" of Ca2+ transport from ATP hydrolysis, which has been reported to be caused by trypsin cleavage of the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles at the second (slower) of two characteristic tryptic sites (Scott, T. L., and Shamoo, A. E. (1982) J. Membr. Biol. 64, 137-144). We find that the loss of Ca2+ accumulation capacity in SR vesicles is poorly correlated with this cleavage under several conditions. The loss is accompanied by increased Ca2+ permeability but not by changes in the properties of the ATPase or ATP-Pi exchange activities of the vesicles. Proteoliposomes containing purified Ca2+-ATPase which has been cleaved in part at the two tryptic sites are as well coupled and impermeable to Ca2+ as proteoliposomes containing intact Ca2+-ATPase. We conclude that the loss of Ca2+ accumulation capacity in SR vesicles on tryptic treatment is due to cleavage of a SR membrane component other than the Ca2+-ATPase, possibly a component of the gated channels which function in Ca2+ release from SR, which leads to a Ca2+ leak. The hydrolytic and coupled transport functions of the Ca2+-ATPase itself may well be unaffected by the two tryptic cleavages.  相似文献   

2.
Scallop sarcoplasmic reticulum (SR), visualized in situ by freeze-fracture and deep-etching, is characterized by long tubes displaying crystalline arrays of Ca2+-ATPase dimer ribbons, resembling those observed in isolated SR vesicles. The orderly arrangement of the Ca2+-ATPase molecules is well preserved in muscle bundles permeabilized with saponin. Treatment with saponin, however, is not needed to isolate SR vesicles displaying a crystalline surface structure. Omission of ATP from the isolation procedure of SR vesicles does not alter the dimeric organization of the Ca2+-ATPase, although the overall appearance of the tubes seems to be affected: the edges of the vesicles are scalloped and the individual Ca2+-ATPase molecules are not clearly defined. The effect of Ca2+ on isolated scallop SR vesicles was investigated by correlating the enzymatic activity and calcium-binding properties of the Ca2+-ATPase with the surface structure of the vesicles, as revealed by electron microscopy. The dimeric organization of the membrane is preserved at Ca2+ concentrations where the Ca2+ binds to the high affinity sites (half-maximum saturation at pCa approximately 7.0 with a Hill coefficient of 2.1) and the Ca2+-ATPase is activated (half-maximum activation at pCa approximately 6.8 with a Hill coefficient of 1.84). Higher Ca2+ concentrations disrupt the crystalline surface array of the SR tubes, both in the presence and absence of ATP. We discuss here whether the Ca2+-ATPase dimer identified as a structural unit of the SR membrane represents the Ca2+ pump in the membrane.  相似文献   

3.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

4.
The Ca2+-ATPase accounts for the majority of Ca2+ removed from the cytoplasm during cardiac muscle relaxation. The Ca2+-ATPase is regulated by phospholamban, a 52 amino acid phosphoprotein, which inhibits Ca2+-ATPase activity by decreasing the apparent affinity of the ATPase for Ca2+. To study the physical mechanism of Ca2+-ATPase regulation by phospholamban using spectroscopic and kinetic experiments, large amounts of both proteins are required. Therefore, we developed a Ca2+-ATPase and phospholamban preparation based on the baculovirus-insect cell expression system using High-Five insect cells to produce large amounts of microsomal vesicles that contain either Ca2+-ATPase expressed alone or Ca2+-ATPase co-expressed with phospholamban. The expressed proteins were characterized using immunofluorescence spectroscopy, Ca2+ -ATPase activity assays, Ca2+ uptake and efflux assays, and Western blotting. Our purification method yields 140 mg of microsomal protein per liter of infection (1.7 x 10(9)cells), and the Ca2+-ATPase and phospholamban account for 16 and 1.4%, respectively, of the total microsomal protein by weight, yielding a phospholamban:Ca2+-ATPase ratio of 1.6:1, similar to that observed in native cardiac SR vesicles. The enzymatic properties of the expressed Ca2+-ATPase are also similar to those observed in native cardiac SR vesicles, and when co-expressed with phospholamban, the Ca2+-ATPase is functionally coupled to phospholamban similar to that observed in cardiac SR vesicles.  相似文献   

5.
Sarcoplasmic reticulum (SR) vesicles were reconstituted by the salting out method in the presence of excess phospholipids: the lipid-to-protein ratio ranged from 10 to 100. It was found that the reconstituted vesicles could be separated by KC1 density gradient centrifugation into four types: those having both cation and anion channels (CASR), those having only cation channels (CSR), those having only anion channels (ASR), and those having no ion channels (PSR). From the yield of these vesicles, it was estimated that one native SR vesicle contains 19 cation channels and 1.4 anion channels on average; the amount of cation channels is 14 times larger than that of anion channels. Although all vesicles thus prepared are considered to contain the Ca2+-ATPase protein, the PSR vesicles alone did not take up Ca2+, but they did do so in the presence of valinomycin. This result indicates that the Ca2+-ATPase takes up Ca2+ in an electrogenic manner. The electromotive force was estimated to be about 50 mV.  相似文献   

6.
K S Leonards  H Kutchai 《Biochemistry》1985,24(18):4876-4884
An essential feature of the function of the Ca2+-ATPase of sarcoplasmic reticulum (SR) is the close coupling between the hydrolysis of ATP and the active transport of Ca2+. The purpose of this study is to investigate the role of other components of the SR membrane in regulating the coupling of Ca2+-ATPase in SR isolated from rabbit skeletal muscle, reconstituted SR, and purified Ca2+-ATPase/phospholipid complexes. Our results suggest that (1) it is possible to systematically alter the degree of coupling obtained in reconstituted SR preparations by varying the [KC1] present during cholate solubilization, (2) the variation in coupling is not due to differences in the permeability of the reconstituted SR vesicles to Ca2+, and (3) vesicles reconstituted with purified Ca2+-ATPase are extensively uncoupled under our experimental conditions regardless of the lipid/protein ratio or phospholipid composition. In reconstituted SR preparations prepared by varying the [KC1] present during cholate treatment, we find a direct correlation between the relative degree of coupling between ATP hydrolysis and Ca2+ transport and the level of the 53-kilodalton (53-kDa) glycoprotein of the SR membrane. These results suggest that the 53-kDa glycoprotein may be involved in regulating the coupling between ATP hydrolysis and Ca2+ transport in the SR.  相似文献   

7.
Myotoxin a is a muscle-damaging toxin isolated from the venom of Crotalus viridis viridis. Its interaction with the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles purified from rabbit skeletal muscle was investigated. Myotoxin a inhibited Ca2+ loading and stimulated Ca2+-dependent ATPase without affecting unidirectional Ca2+ efflux. Its action was dose, time, and temperature dependent. Myotoxin a partially blocked the binding of specific anti-(rabbit SR Ca2+-ATPase) antibodies. It is concluded that myotoxin a attaches to the SR Ca2+-ATPase and uncouples Ca2+ uptake from Ca2+-dependent ATP hydrolysis. Myotoxin a also prevented the formation of decavanadate-induced two-dimensional crystalline arrays of the SR Ca2+-ATPase.  相似文献   

8.
The effects of aliphatic hydrocarbons within the liposomes on the Ca2+ transport function of isolated sarcoplasmic reticulum (SR) membranes of rabbit skeletal muscle, vesiculate preparation of Ca2+ dependent ATPase and proteoliposomes reconstituted from Ca2+-ATPase and egg phosphatidylcholine, were studied. It was shown that liposomes prepared from dipalmitoyl phosphatidylcholine containing aliphatic hydrocarbons increase 2 to 3 times Ca2+ accumulation by Ca2+-dependent ATPase from rabbit skeletal muscle SR. Ca2+ transport by SR vesicles increases in the presence of hydrocarbons by 15--20%. The activating effect of hydrocarbons on Ca2+ transport by proteoliposomes depends on the lipid/protein ratio. The proteoliposomes with a high lipid/protein ratio are practically insensitive to the effects of hydrocarbons. It was suggested that activation of Ca2+ transport by hydrocarbons is due to blocking of Ca2+ leakage channels formed during the aggregation of Ca2+-ATPase molecules. Treatment of membranes by formaldehyde results in the oligomerization of Ca2+-ATPase and decreases 2--4-fold the ATP-dependent accumulation of Ca2+. Subsequent addition of decane restores Ca2+ transport practically completely.  相似文献   

9.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

10.
Tryptic modification appears to potentiate activation of the Ca2+ channels of isolated sarcoplasmic reticulum vesicles. In the presence of 1 mM free Mg2+ we observe that: 1) cAMP and doxorubicin activation of passive efflux from tryptically modified vesicles is approximately 20-fold greater than from native SR. 2) Ruthenium red inhibits Ca2+ efflux from modified vesicles. 3) The binding affinities and Hill coefficients of activation of efflux by cAMP and doxorubicin are the same in modified vesicles as in native vesicles. 4) Proteolysis stimulates passive efflux from heavy SR much more than from light SR. 5) Stimulation of cAMP- and doxorubicin-activated Ca2+ release is biphasic, whereas Hg2+-activated Ca2+ efflux is monophasic. 6) In the absence of Mg2+, the Ca2+ dependence of cAMP-activated efflux from tryptically modified vesicles is similar to that of native vesicles, with peak efflux rates occurring between approximately 1 and 10 microM Ca2+. 7) The Mg2+ dependence of efflux from modified vesicles is similar to that of native vesicles. 8) SDS-polyacrylamide gels indicate that the Ca2+, Mg2+-ATPase and the high molecular weight ryanodine receptor are both cleaved faster than the stimulation of efflux.  相似文献   

11.
A skeletal muscle membrane fraction enriched in sarcoplasmic reticulum (SR) contained Ca2+-ATPase activity which was stimulated in vitro in normal chickens (line 412) by 6 nM purified bovine calmodulin (33% increase over control, P less than 0.001). In contrast, striated muscle from chickens (line 413) affected with an inherited form of muscular dystrophy, but otherwise genetically similar to line 412, contained SR-enriched Ca2+-ATPase activity which was resistant to stimulation in vitro by calmodulin. Basal levels of Ca2+-ATPase activity (no added calmodulin) were comparable in muscles of unaffected and affected animals, and the Ca2+ optima of the enzymes in normal and dystrophic muscle were identical. Purified SR vesicles, obtained by calcium phosphate loading and sucrose density gradient centrifugation, showed the same resistance of dystrophic Ca2+-ATPase to exogenous calmodulin as the SR-enriched muscle membrane fraction. Dystrophic muscle had increased Ca2+ content compared to that of normal animals (P less than 0.04) and has been previously shown to contain increased levels of immuno- and bioactive calmodulin and of calmodulin mRNA. The calmodulin resistance of the Ca2+-ATPase in dystrophic muscle reflects a defect in regulation of cell Ca2+ metabolism associated with elevated cellular Ca2+ and calmodulin concentrations.  相似文献   

12.
Purified sarcoplasmic reticulum (SR) vesicles from dog heart were used as an antigen to produce monoclonal antibodies (mAbs) to the Ca2+-ATPase. Nine of twelve clones of hybridoma cells produce mAbs which cross-react with seven SR preparation isolated from cardiac and skeletal muscles of various species. Three mAbs of IgM type interact with the 45-kDa tryptic fragment of rabbit skeletal muscle Ca2+-ATPase and markedly inhibit Ca2+ uptake (by 95%) and ATPase activity (by 80%) and decrease (by 30-50%) the steady-state level of the Ca2+-ATPase phosphoenzyme. The ATPase activity could be completely blocked by one of these mAbs if the incubation medium was supplemented with 2 microM orthovanadate. On the other hand, when SR vesicles were treated with increasing concentrations of a nonionic detergent C12E8, the inhibiting effect of mAb 4B4 is diminished. It is concluded that the mAbs inhibit the Ca2+-ATPase only if the enzyme exists in an oligomeric form. The inhibition of the SR activities is due to an effect of the mAbs on the whole active center of the enzyme, rather than on a single partial reaction.  相似文献   

13.
Dysfunction of sarcoplasmic reticulum (SR) Ca2+-ATPase induced by oxidative stress may be a contributing factor to the development of serious age related diseases. Incubation of sarcoplasmic reticulum (SR) vesicles of rabbit skeletal muscles with Fe2+/H2O2/ascorbate decreased the SH group content of SR approximately to 35% and Ca2+-ATPase activity to 50% of control not oxidized sample. Protein carbonyls increased twofold, lipid peroxidation was also significantly elevated. The antioxidant effects of trolox, the pyridoindole derivative stobadine and of the standardized extracts from bark of Pinus Pinaster PycnogenolR (Pyc) and from leaves of Ginkgo biloba (EGb 761) were studied on oxidatively injured SR. All antioxidants exerted preventive effects against the oxidized lipids and protein SH groups of SR vesicles. Trolox and stobadine did not influence protein carbonyl formation, while flavonoid extracts prevented carbonyl generation, probably by binding to protein. The preventive effects of the antioxidants studied on lipids and protein SH groups were however not associated with protection of Ca2+-ATPase activity. Stobadine and trolox exerted no effect on enzyme activity, Pyc and EGb 761 enhanced the inhibitory effect of Ca2+-ATPase activity in oxidatively injured SR. Concluding, under the conditions of oxidative stress induced by Fe2+/H2O2/ascorbate against SR of rabbit skeletal muscle, the agents studied demonstrated antioxidant effects yet failed to protect Ca2+-ATPase activity.  相似文献   

14.
The Ca2+ content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca2+ release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca2+ within the SR with the membrane-permeant low affinity Ca2+ chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca2+ content and SR Ca2+ depletion can influence Ca2+ release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca2+ release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca2+ releases increased in frequency and developed into cell-wide Ca2+ waves. SR Ca2+ load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40microTPEN did not significantly inhibit the SR-Ca2+-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca2+ chelator in intracellular Ca2+ stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca2+ leak from the SR leading to its Ca2+ depletion. Lowering of SR Ca2+ content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.  相似文献   

15.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to the S-S bond such as 2,2'-dithiodipyridine (2,2'-DTDP), 4,4'-dithiodipyridine, and N-succinimidyl 3(2-pyridyldithio)propionate (SPDP) trigger Ca2+ release from sarcoplasmic reticulum (SR) vesicles. They are known to specifically oxidize free SH sites via a thiol-disulfide exchange reaction with the stoichiometric production of thiopyridone. Thus, the formation of a mixed S-S bond between an accessible SH site on an SR protein and a RDS causes large increases in SR Ca2+ permeability. Reducing agents, glutathione (GSH) or dithiothreitol reverse the effect of RDSs and permit rapid re-uptake of Ca2+ by the Ca2+, Mg2+-ATPase. The RDSs, 2,2'-DTDP, 4,4'-dithiodipyridine and SPDP displaced [3H]ryanodine binding to the Ca2+-receptor complex at IC50 values of 7.5 +/- 0.2, 1.5 +/- 0.1, and 15.4 +/- 0.1 microM, respectively. RDSs did not alter the rapid initial phase of Ca2+ uptake by the pump, stimulated ATPase activity, and induced release from passively loaded vesicles with nonactivated pumps; thus they act at a Ca2+ release channel and not at the Ca2+, Mg2+-ATPase. Efflux rates increased in 0.25-1.0 mM [Mg2+]free then decreased in 2-5 mM [Mg2+]free. Adenine nucleotides inhibited the oxidation of SHs on SR protein by RDSs and thus reduced Ca2+ efflux rates. However, once RDSs oxidized these SH sites and opened the Ca2+ release pathway, subsequent additions of nucleotides stimulated Ca2+ efflux. In skinned fibers, 2,2'-dithiodipyridine elicited rapid twitches which were blocked by ruthenium red. These results indicate that RDSs trigger Ca2+ release from SR by oxidizing a critical SH group, and thus provide a method to covalently label the protein(s) involved in causing these changes in Ca2+ permeability.  相似文献   

16.
Ca2+-uptake activities of the sarcoplasmic reticulum (SR) were determined with a Ca2+-sensitive electrode in homogenates from fast- and slow-twitch muscles from both normal and dystrophic mice (C57BL/6J strain) of different ages. Immunochemical quantification of tissue Ca2+-ATPase content allowed determination of the specific Ca2+-transport activity of the enzyme. In 3-week-old mice of the dystrophic strain specific Ca2+ transport was already significantly lower than in the normal strain. It progressively decreased with maturation and reached only 40-50% and 30-50% of the normal values in fast- and slow-twitch muscles of adult dystrophic animals, respectively. Tissue contents of calsequestrin were reduced in both types of muscle leading to an increased Ca2+-ATPase to calsequestrin protein ratio. Equal amounts of the Ca2+-ATPase protein (detected by Coomassie blue staining of polyacrylamide gels) were present in SR vesicles isolated by Ca2+-oxalate loading from adult normal and dystrophic fast-twitch muscles. However, the specific ATP-hydrolysing activity of the enzyme was approximately 50% lower in dystrophic than in normal SR. The reduced ATP-hydrolysing activity was correlated with decreased Ca2+-transport activity, phosphoprotein formation and fluorescein isothiocyanate labeling as determined in total microsomal and heavy SR fractions. Although the Ca2+ and ATP affinities of the enzyme were unaltered, its ATPase activity was reduced at all levels of ATP in the dystrophic SR. Taken together, these findings point to a markedly impaired function of the SR and an increase in the population of inactive SR Ca2+-ATPase molecules in murine muscular dystrophy.  相似文献   

17.
Reactive disulfide reagents (RDSs) with a biotin moiety have been synthesized and found to cause Ca2+ release from sarcoplasmic reticulum (SR) vesicles. The RDSs oxidize SH sites on SR proteins via a thiol-disulfide exchange, with the formation of mixed disulfide bonds between SR proteins and biotin. Biotinylated RDSs identified a 106-kDa protein which was purified by biotin-avidin chromatography. Disulfide reducing agents, like dithiothreitol, reverse the effect of RDSs and thus promoted active re-uptake of Ca2+ and dissociated biotin from the labeled protein indicating that biotin was covalently linked to the 106-kDa protein via a disulfide bond. Several lines of evidence indicate that this protein is not Ca2+, Mg2+-ATPase and is not a proteolytic fragment or a subunit of the 400-kDa Ca2+-ryanodine receptor complex (RRC). Monoclonal antibodies against the ATPase did not cross-react with the 106-kDa protein, and polyclonal antibodies against the 106-kDa did not cross-react with either the ATPase or the 400-kDa RRC. RDSs did not label the 400-kDa RRC with biotin. Linear sucrose gradients used to purify the RRC show that the 106-kDa protein migrated throughout 5-20% linear sucrose gradients, including the high sucrose density protein fractions containing 400-kDa RRC. Protease inhibitors diisopropylfluorophosphate used to prevent proteolysis of 400-kDa proteins did not alter the migration of 106-kDa in sucrose gradients nor the patterns of biotin labeling of the 106-kDa protein. Incorporation of highly purified 106-kDa protein (free of RRC) in planar bilayers revealed cationic channels with large Na+ (gNa+ = 375 +/- 15 pS) and Ca2+ (gCa2+ = 107.7 +/- 12 pS) conductances which were activated by micromolar [Ca2+]free or millimolar [ATP] and blocked by micromolar ruthenium red or millimolar [Mg2+]. Thus, the SR contains a sulfhydryl-activated 106-kDa Ca2+ channel with apparently similar characteristics to the 400-kDa "feet" proteins.  相似文献   

18.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

19.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

20.
The interaction of Ca2+ and vanadate with fluorescein isothiocyanate (FITC) labeled sarcoplasmic reticulum (SR) Ca2+-ATPase has been studied by following the kinetics of changes in the reporter group fluorescence and equilibrium fluorescence levels. The vanadate species bound to the enzyme is clearly monomeric orthovanadate, probably H2VO4-. Vanadate binding is noncooperative, suggesting an absence of interactions between the Ca2+-ATPase subunits. The fluorescence experiments confirm the existence of a calcium-enzyme-vanadate complex (in the presence of magnesium). On the basis of the fluorescence properties of this complex, it is similar in its conformation to the calcium-enzyme complex, i.e., "E1-like" rather than "E2-like". However, Ca2+ binds to the enzyme-vanadate complex via sites that are only accessible from the interior of the SR vesicles. The complex Ca2E*Van, which is rapidly formed, isomerizes very slowly (t1/2 approximately 1 min) to the stable ternary complex. The mutual destabilization between bound vanadate and two bound Ca2+ ions is only 1.6 kcal/mol, much smaller than that produced by the interaction of calcium and phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号