首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.  相似文献   

2.
Y Rong  M Liu  L Ma  W Du  H Zhang  Y Tian  Z Cao  Y Li  H Ren  C Zhang  L Li  S Chen  J Xi  L Yu 《Nature cell biology》2012,14(9):924-934
Autophagy is a lysosome-based degradation pathway. During autophagy, lysosomes fuse with autophagosomes to form autolysosomes. Following starvation-induced autophagy, nascent lysosomes are formed from autolysosomal membranes through an evolutionarily conserved cellular process, autophagic lysosome reformation (ALR), which is critical for maintaining lysosome homeostasis. Here we report that clathrin and phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulate ALR. Combining a screen of candidates identified through proteomic analysis of purified ALR tubules, and large-scale RNAi knockdown, we unveiled a tightly regulated molecular pathway that controls lysosome homeostasis, in which clathrin and PtdIns(4,5)P(2) are the central components. Our functional study demonstrates the central role of clathrin and its associated proteins in cargo sorting, phospholipid conversion, initiation of autolysosome tubulation, and proto-lysosome budding during ALR. Our data not only uncover a molecular pathway by which lysosome homeostasis is maintained through the ALR process, but also reveal unexpected functions of clathrin and PtdIns(4,5)P(2) in lysosome homeostasis.  相似文献   

3.
4.
Epand RF  Sayer BG  Epand RM 《The FEBS journal》2005,272(7):1792-1803
The N-terminally myristoylated, 19-amino acid peptide, corresponding to the amino terminus of the neuronal protein NAP-22 (NAP-22 peptide) is a naturally occurring peptide that had been shown by fluorescence to cause the sequestering of a Bodipy-labeled PtdIns(4,5)P2 in a cholesterol-dependent manner. The present work, using differential scanning calorimetry (DSC), extends the observation that formation of a PtdIns(4,5)P2-rich domain is cholesterol dependent and shows that it also leads to the formation of a cholesterol-depleted domain. The PtdIns(4,5)P2 used in the present work is extracted from natural sources and does not contain any label and has the native acyl chain composition. Peptide-induced formation of a cholesterol-depleted domain is abolished when the sole aromatic amino acid, Tyr11 is replaced with a Leu. Despite this, the modified peptide can still sequester PtdIns(4,5)P2 into domains, probably because of the presence of a cluster of cationic residues in the peptide. Cholesterol and PtdIns(4,5)P2 also modulate the insertion of the peptide into the bilayer as revealed by 1H NOESY MAS/NMR. The intensity of cross peaks between the aromatic protons of the Tyr residue and the protons of the lipid indicate that in the presence of cholesterol there is a change in the nature of the interaction of the peptide with the membrane. These results have important implications for the mechanism by which NAP-22 affects actin reorganization in neurons.  相似文献   

5.
6.
Rapamycin (rapa)-induced heterodimerization of the FRB domain of the mammalian target of rapa and FKBP12 was used to translocate a phosphoinositide 5-phosphatase (5-ptase) enzyme to the plasma membrane (PM) to evoke rapid changes in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) levels. Rapa-induced PM recruitment of a truncated type IV 5-ptase containing only the 5-ptase domain fused to FKBP12 rapidly decreased PM PtdIns(4,5)P(2) as monitored by the PLCdelta1PH-GFP fusion construct. This decrease was paralleled by rapid termination of the ATP-induced Ca(2+) signal and the prompt inactivation of menthol-activated transient receptor potential melastatin 8 (TRPM8) channels. Depletion of PM PtdIns(4,5)P(2) was associated with a complete blockade of transferrin uptake and inhibition of epidermal growth factor internalization. None of these changes were observed upon rapa-induced translocation of an mRFP-FKBP12 fusion protein that was used as a control. These data demonstrate that rapid inducible depletion of PM PtdIns(4,5)P(2) is a powerful tool to study the multiple regulatory roles of this phospholipid and to study differential sensitivities of various processes to PtdIns(4,5)P(2) depletion.  相似文献   

7.
Lysosomal mutations inhibit lipofuscinosis of the spleen in C57BL mice   总被引:1,自引:0,他引:1  
Beige, bg, and reduced pigmentation, rp, are recessive mutations affecting lysosomal function. Homozygosity for beige prevented lipofuscinosis of the spleen in C57BL mice and its incidence was greatly reduced by homozygosity for rp. Dilute (d) homozygotes, with normal lysosomes, were susceptible to lipofuscinosis even though their melanosomes were more severely affected than those of beige mice.  相似文献   

8.
Mutations in chs1/beige result in a deficiency in intracellular transport of vesicles that leads to a generalized immunodeficiency in mice and humans. The function of NK cells, CTL, and granulocytes is impaired by these mutations, indicating that polarized trafficking of vesicles is controlled by CHS1/beige proteins. However, a molecular explanation for this defect has not been identified. Here we describe a novel gene with orthologues in mice, humans, and flies that contains key features of both chs1/beige and A kinase anchor genes. We designate this novel gene lba for LPS-responsive, beige-like anchor gene. Expression of lba is induced after LPS stimulation of B cells and macrophages. In addition, lba is expressed in many other tissues in the body and has three distinct mRNA isoforms that are differentially expressed in various tissues. Strikingly, LBA-green-fluorescent protein (GFP) fusion proteins are localized to vesicles after LPS stimulation. Confocal microscopy indicates this protein is colocalized with the trans-Golgi complex and some lysosomes. Further analysis by immunoelectron microscopy demonstrates that LBA-GFP fusion protein can localize to endoplasmic reticulum, plasma membrane, and endocytosis vesicles in addition to the trans-Golgi complex and lysosomes. We hypothesize that LBA/CHS1/BG proteins function in polarized vesicle trafficking by guiding intracellular vesicles to activated receptor complexes and thus facilitate polarized secretion and/or membrane deposition of immune effector molecules.  相似文献   

9.
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis. PtdIns(4,5)P2 is generated on lysosomes by the sequential action of a lysosome-associated type II phosphatidylinositol 4-kinase and a soluble type I phosphatidylinositol 4-phosphate 5-kinase. Phosphatidic acid, which potently stimulates type I phosphatidylinositol 4-phosphate 5-kinase activity, is generated on the bilayer by a phospholipase D1-like enzyme located on the lysosomal surface. Quenching phosphatidic acid function with primary alcohols prevents the synthesis of PtdIns(4, 5)P2 and blocks coat assembly. Generating phosphatidic acid directly on lysosomes with exogenous bacterial phospholipase D in the absence of ATP still drives adaptor recruitment and limited coat assembly, indicating that PtdIns(4,5)P2 functions, at least in part, to activate the PtdIns(4,5)P2-dependent phospholipase D1. These results provide the first direct evidence for the involvement of anionic phospholipids in clathrin-coat assembly on membranes and define the enzymes responsible for the production of these important lipid mediators.  相似文献   

10.
The beige mouse is an animal model for the human Chediak-Higashi syndrome, a disease characterized by giant lysosomes in most cell types. In mice, treatment with androgenic hormones causes a 20-50-fold elevation in at least one kidney lysosomal enzyme, beta-glucuronidase. Beige mice treated with androgen had significantly higher kidney beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-D-glucosaminidase (hexosaminidase) levels than normal mice. Other androgen-inducible enzymes and enzyme markers for the cytosol, mitochondria, and peroxisomes were not increased in kidney of beige mice. No significant lysosomal enzyme elevation was observed in five other organs of beige mice with or without androgen treatment, nor in kidneys of beige females not treated with androgen. Histochemical staining for glucuronidase together with subcellular fractionation showed that the higher glucuronidase content of beige mouse kidney is caused by a striking accumulation of giant glucuronidase-containing lysosomes in tubule cells near the corticomedullary boundary. In normal mice lysosomal enzymes are coordinately released into the lumen of the kidney tubules and appreciable amounts of lysosomal enzymes are present in the urine. Levels of urinary lysosomal enzymes are much lower in beige mice than in normal mice. It appears that lysosomes may accumulate in beige mice because of defective exocytosis resulting either from decreased intracellular motility of lysosomes or from their improper fusion with the plasma membrane. A similar defect could account for characteristics of the Chediak-Higashi syndrome.  相似文献   

11.
Chediak Higashi syndrome (CHS) is a rare, autosomal recessive disorder that affects multiple systems of the body. Patients with CHS exhibit hypopigmentation of the skin, eyes and hair, prolonged bleeding times, easy bruisability, recurrent infections, abnormal NK cell function and peripheral neuropathy. Morbidity results from patients succumbing to frequent bacterial infections or to an "accelerated phase" lymphoproliferation into the major organs of the body. Current treatment for the disorder is bone marrow transplant, which alleviates the immune problems and the accelerated phase, but does not inhibit the development of neurologic disorders that grow increasingly worse with age. There are several animal models of CHS, the beige mouse being the most characterized. Positional cloning and YAC complementation resulted in the identification of the Beige and CHS1/LYST genes. These genes encode a cytosolic protein of 430,000 Da. Sequence analysis identified three conserved regions in the protein: a HEAT repeat motif at the amino-terminus that contains several a helices, a BEACH domain containing the amino acid sequence WIDL, and a WD40 repeat motif, which is described as a protein-protein interaction domain. The presence of the BEACH and WD40 domains defines a family of genes that encode extremely large proteins.  相似文献   

12.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

13.
The WD-repeat protein factor associated with nSMase activity (FAN) is a member of the family of TNF receptor adaptor proteins that are coupled to specific signaling cascades. However, the precise functional involvement of FAN in specific cellular TNF responses remain unclear. Here, we report the involvement of FAN in TNF-induced actin reorganization and filopodia formation mediated by activation of Cdc42. The pleckstrin-homology (PH) domain of FAN specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P), which targets FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of FAN to mediate filopodia formation was blunted either by the destruction of the PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between the PH domain and the adjacent beige and Chediak-Higashi (BEACH) domain. Furthermore, FAN was shown to interact with the actin cytoskeleton in TNF-stimulated cells via direct filamentous actin (F-actin) binding. The results of this study suggest that PH-mediated plasma membrane targeting of FAN is critically involved in TNF-induced Cdc42 activation and cytoskeleton reorganization.  相似文献   

14.
Chediak-Higashi syndrome is a genetic disorder caused by mutations in a gene encoding a protein named LYST in humans ("lysosomal trafficking regulator") or Beige in mice. A prominent feature of this disease is the accumulation of enlarged lysosome-related granules in a variety of cells. The genome of Dictyostelium discoideum contains six genes encoding proteins that are related to LYST/Beige in amino acid sequence, and disruption of one of these genes, lvsA (large volume sphere), results in profound defects in cytokinesis. To better understand the function of this family of proteins in membrane trafficking, we have analyzed mutants disrupted in lvsA, lvsB, lvsC, lvsD, lvsE, and lvsF. Of all these, only lvsA and lvsB mutants displayed interesting phenotypes in our assays. lvsA-null cells exhibited defects in phagocytosis and contained abnormal looking contractile vacuole membranes. Loss of LvsB, the Dictyostelium protein most similar to LYST/Beige, resulted in the formation of enlarged vesicles that by multiple criteria appeared to be acidic lysosomes. The rates of endocytosis, phagocytosis, and fluid phase exocytosis were normal in lvsB-null cells. Also, the rates of processing and the efficiency of targeting of lysosomal alpha-mannosidase were normal, although lvsB mutants inefficiently retained alpha-mannosidase, as well as two other lysosomal cysteine proteinases. Finally, results of pulse-chase experiments indicated that an increase in fusion rates accounted for the enlarged lysosomes in lvsB-null cells, suggesting that LvsB acts as a negative regulator of fusion. Our results support the notion that LvsB/LYST/Beige function in a similar manner to regulate lysosome biogenesis.  相似文献   

15.
Copper metabolism Murr1 domain 1 (COMMD1) is a 21-kDa protein involved in copper export from the liver, NF-kappaB signaling, HIV infection, and sodium transport. The precise function of COMMD and the mechanism through which COMMD1 performs its multiple roles are not understood. Recombinant COMMD1 is a soluble protein, yet in cells COMMD1 is largely seen as targeted to cellular membranes. Using co-localization with organelle markers and cell fractionation, we determined that COMMD1 is located in the vesicles of the endocytic pathway, whereas little COMMD1 is detected in either the trans-Golgi network or lysosomes. The mechanism of COMMD1 recruitment to cell membranes was investigated using lipid-spotted arrays and liposomes. COMMD1 specifically binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the absence of other proteins and does not bind structural lipids; the phosphorylation of PtdIns at position 4 is essential for COMMD1 binding. Proteolytic sensitivity and molecular modeling experiments identified two distinct domains in the structure of COMMD1. The C-terminal domain appears sufficient for lipid binding, because both the full-length and C-terminal domain proteins bind to PtdIns(4,5)P2. In native conditions, endogenous COMMD1 forms large oligomeric complexes both in the cytosol and at the membrane; interaction with PtdIns(4,5)P2 increases the stability of oligomers. Altogether, our results suggest that COMMD1 is a scaffold protein in a distinct sub-compartment of endocytic pathway and offer first clues to its role as a regulator of structurally unrelated membrane transporters.  相似文献   

16.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) synthesis has been implicated in maintaining the function of the Golgi apparatus. Here we demonstrate that the inhibition of PtdIns(4,5)P(2) synthesis in vitro in response to primary alcohol treatment and the kinetics of Golgi fragmentation in vivo were very rapid and tightly coupled. Preloading Golgi membranes with short chain phosphatidic acid abrogated the alcohol-mediated inhibition of PtdIns(4,5)P(2) synthesis in vitro. We also show that fragmentation of the Golgi apparatus in response to diminished PtdIns(4,5)P(2) synthesis correlated with both the phosphorylation of a Golgi form of beta III spectrin, a PtdIns(4,5)P(2)-interacting protein, and changes in its intracellular redistribution. The data are consistent with a model suggesting that the decreased PtdIns(4,5)P(2) synthesis and the phosphorylation state of beta III spectrin modulate the structural integrity of the Golgi apparatus.  相似文献   

17.
The turnover of phosphomonoester groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated in human erythrocytes by short-term labelling with [32P]Pi. The procedure applied ensured a quantitative extraction of erythrocyte polyphosphoinositides as well as their reliable separation for the determinations of pool sizes and specific radioactivities. The pool sizes of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 are 25, 11 and 44 nmol/ml of cells respectively. Under steady-state conditions, the phosphorylation fluxes from [gamma-32P]ATP into PtdIns4P and PtdIns(4,5)P2 are in the ranges 14-22 and 46-94 nmol X h-1 X ml of cells-1 respectively. Only 25-60% of total PtdIns4P and 6-10% of total PtdIns(4,5)P2 take part in the rapid tracer exchange, i.e. are compartmentalized. In isolated erythrocyte ghosts, the turnover of PtdIns4P approximately corresponds to that in intact erythrocytes, although any compartmentation can be excluded in this preparation. Under the conditions of incubation employed, the turnover of PtdIns(4,5)P2 is more than one order of magnitude smaller in isolated ghosts than that obtained for intact erythrocytes.  相似文献   

18.
It is well known that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) plays important roles not only as a precursor lipid for generating second messengers but also as a regulator of cytoskeletal re-organization. The last step of PtdIns(4,5)P2 synthesis is catalyzed by PtdIns monophosphate(PIP) kinase. So far, three type I PIP kinases(alpha, beta, and gamma), which phosphorylate PtdIns(4) to PtdIns(4,5)P2, and three type II PIP kinases(alpha, beta, gamma), which phosphorylate PtdIns(5)P to PtdIns(4,5)P2 have been found. On the other hand, several inositolpolyphosphate 5-phosphatases which convert PtdIns(4,5)P2 to PtdIns(4) are known. Among them, synaptojanin, which associates with tyrosine kinase receptors through an adaptor protein, Ash/Grb2, in response to growth factors, is capable of hydrolyzing PtdIns(4,5)P2 bound to actin regulatory proteins, resulting in actin filament re-organization downstream of tyrosine kinases.  相似文献   

19.
Stimulation of the human T cell line, Jurkat, by the addition of monoclonal antibodies reactive with the T cell antigen receptor complex (CD3/Ti) leads to sustained increases in levels of inositol 1,4,5-trisphosphate. To investigate the possibility that the production of polyphosphoinositides is regulated during CD3/Ti stimulation, we studied Jurkat cells whose inositol phospholipids had been labeled to steady state with [3H]inositol, as well as Jurkat cells during nonequilibrium labeling with [32P]orthophosphate. The addition of CD3 monoclonal antibodies led to a 4-5-fold increase in [3H]inositol trisphosphate that was sustained for greater than 20 min. Within 60 s of CD3/Ti stimulation, [3H] phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) decreased by 65 and 35%, respectively. This change in [3H]PtdIns(4,5)P2 persisted for greater than 20 min. The decrease in [3H]PtdIns4P, however, was transient, and, after 5 min, the levels of [3H]PtdIns4P were comparable in stimulated and unstimulated cells. To examine the rate of flux through inositol phospholipids, we measured the CD3/Ti-stimulated changes in the ratio, 32P cpm/3H cpm, in each inositol phospholipid. CD3/Ti stimulation led to accelerated fluxes through PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) that were maintained for greater than 20 min. After the initial 30 s, however, there was no detectable effect of anti-CD3 on flux through Ptsins4p. This observation suggested that, during CD3/Ti stimulation, production of PtdIns(4,5)P2 from PtdIns might occur via a small pool of PtdIns4P with a very high turnover. The existence of such a pool was established by determining that, in stimulated cells, the 32P-specific activity of the 1-position phosphate of PtdIns(4,5)P2 was 8-10-fold that of PtdIns4P. We conclude that, during the initial 60 s of CD3/Ti stimulation, there is a substantial depletion of cellular PtdIns(4,5)P2 and PtdIns4P. Thereafter, a CD3/Ti-regulated pathway generates PtdIns(4,5)P2 from PtdIns through a small, but highly labile, pool of PtdIns4P.  相似文献   

20.
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt–Hoge–Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri‐nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi‐associated small GTPase Rab34. Rab34‐positive peri‐nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34‐induced peri‐nuclear lysosome clustering. FLCN interacts directly via its C‐terminal DENN domain with the Rab34 effector RILP. Using purified recombinant proteins, we show that the FLCN‐DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP. We propose a model whereby starvation‐induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34‐positive peri‐nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号