首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal or cardiac muscle fibers can be separated by brief (3--5 second) dissociation of formalin-fixed pieces with a Willems Polytron (Brinkmann Instrument Co.). Such separated fibers are useful for demonstration of abnormal accumulations of lipids, carbohydrates, proteins and minerals in metabolic diseases. Staining techniques for demonstration of various stored materials include: 1) toluidine blue at pH 2.8 for acid mucopolysaccharide in skeletal muscle fibers in Pompe's glycogenesis 2, 2) one-step trichrome stain for nemaline myopathy and for abnormal mitochondria in X-linked infantile cardiomyopathy, 3) periodic acid-methenamine silver stain for glycolipid-containing lysosomes in I-cell disease (mucolipidosis 2), 4) Sudan black B stain for lipid in skeletal muscle fibers in Reye's syndrome, infantile lactic acidosis, Leigh's infantile subacute necrotizing encephalopathy and Jansky-Bielschowsky late infantile ceroid lipofuscinosis, 5) iron stain for iron in cardiac and skeletal muscle fibers in thalassemia with advanced hemosiderosis, and 6) autofluorescence for "ceroid" in skeletal muscle fibers in Jansky-Bielschowsky disease.  相似文献   

2.
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.(1) Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and preclinical studies, has proven more difficult than anticipated.(2-4) Our recent work published in Annals of Neurology(5) was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found that the cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.  相似文献   

3.
《Autophagy》2013,9(4):318-320
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.1 Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and pre-clinical studies, has proven more difficult than anticipated.2-4 The work published in Annals of Neurology5 was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found thatthe cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.

Addendum to:

Dysfunction of Endocytic and Autophagic Pathways in a Lysosomal Storage Disease

Tokiko Fukuda, Lindsay Ewan, Martina Bauer, Robert J. Mattaliano, Kristien Zaal,Evelyn Ralston, Paul H. Plotz and Nina Raben

Ann Neurol 2006; 59:700-8  相似文献   

4.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. Inheritance is autosomal recessive. Three main childhood subtypes are recognized: infantile (Haltia-Santavuori disease; MIM 256743), late infantile (Jansky-Bielschowsky disease; MIM 204500), and juvenile (Spielmeyer-Sjögren-Vogt, or Batten, disease; MIM 204200). The gene loci for the juvenile (CLN3) and infantile (CLN1) types have been mapped to human chromosomes 16p and 1p, respectively, by linkage analysis. Linkage analysis of 25 families segregating for late-infantile NCL has excluded these regions as the site of this disease locus (CLN2). The three childhood subtypes of NCL therefore arise from mutations at distinct loci.  相似文献   

5.
A method is presented for the relatively rapid demonstration of the myenteric plexus. Saturated Sudan black B in 70% ethanol followed by 0.01% aqueous buffered thionin were used on intestinal peels (whole-mounts) to stain myelinated and unmyelinated fibers and neuron cell bodies, respectively. In contrast to accepted silver methods, these two kinds of fibers were distinguished clearly; Schwann cell nuclei and nodes of Ranvier were visible. Preparations had the following attributes: relatively low optical density coupled with high visual contrast, freedom from metallic “mirroring,” low background staining of subjacent muscle fibers, and presentation of a polychromatic picture. The entire procedure was under the complete and repeatable control of the operator. Perikaryon and nuclear morphology were clearly demonstrated. The limitations of this method are that it does not provide good visualization of individual unmyelinated neuronal processes and does not permit preparation of permanent slides.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6–9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.  相似文献   

7.
The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n=26) or not stimulated to contract (REST; n=14). The relative mean developed tension of EX fibers decreased to 29+/-7% of initial peak tension at the stimulation end point. Following treatment, individual fibers were allowed to recover for 1 (n=9), 2 (n=8), or 4 h (n=9) prior to isolation of total cellular mRNA. HSP72, HSP60, and cardiac alpha-actin mRNA content were then assessed in individual fibers using quantitative PCR detection. Relative HSP72 mRNA content was significantly (P<0.05) elevated at the 2-h postcontraction time point relative to REST fibers when normalized to either HSP60 (18.5+/-7.5-fold) or cardiac alpha-actin (14.7+/-4.3-fold), although not at the 1- or 4-h time points. These data indicate that 1) extraction of RNA followed by relative quantification of mRNA of select genes in isolated single skeletal muscle fibers can be reliably performed, 2) HSP60 and cardiac alpha-actin are suitable endogenous normalizing genes in skeletal muscle following contractions, and 3) a significantly elevated content of HSP72 mRNA is detectable in skeletal muscle 2 h after a single bout of fatiguing contractions, despite minimal temperature changes and without influence from extracellular sources.  相似文献   

8.
The control of myocardial contraction with skeletal fast muscle troponin C   总被引:8,自引:0,他引:8  
The present study describes experiments on the myocardial trabeculae from the right ventricle of Syrian hamsters whose troponin C (TnC) moiety was exchanged with heterologous TnC from fast skeletal muscle of the rabbit. These experiments were designed to help define the role of the various classes of Ca2+-binding sites on TnC in setting the characteristic sensitivities for activations of cardiac and skeletal muscles. Thin trabeculae were skinned and about 75% of their troponin C extracted by chemical treatment. Tension development on activations by Ca2+ and Sr2+ was found to be nearly fully blocked in such TnC extracted preparations. Troponin C contents and the ability to develop tension on activations by Ca2+ and Sr2+ was permanently restored after incubation with 2-6 mg/ml purified TnC from either rabbit fast-twitch skeletal muscle (STnC) or the heart (CTnC, cardiac troponin C). The native (skinned) cardiac muscle is characteristically about 5 times more sensitive to activation by Sr2+ than fast muscle, but the STnC-loaded trabeculae gave response like fast muscle. Attempts were also made to exchange the TnC in psoas (fast-twitch muscle) fibers, but unlike cardiac muscle tension response of the maximally extracted psoas fibers could be restored only with homologous STnC. CTnC was effective in partially extracted fibers, even though the uptake of CTnC was complete in the maximally extracted fibers. The results in this study establish that troponin C subunit is the key in setting the characteristic sensitivity for tension control in the myocardium above that in the skeletal muscle. Since a major difference between skeletal and cardiac TnCs is that one of the trigger sites (site I, residues 28-40 from the N terminus) is modified in CTnC and has reduced affinity for Ca2+ binding, the possibility is raised that this site has a modulatory effect on activation in different tissues and limits the effectiveness of CTnC in skeletal fibers.  相似文献   

9.
Vesicle-associated membrane protein 5 (VAMP5) is a member of the SNARE protein family, which is generally thought to regulate the docking and fusion of vesicles with their target membranes. This study investigated the expression and localization of the VAMP5 protein. Immunoblotting analyses detected the VAMP5 protein in skeletal muscle, heart, spleen, lung, liver, and kidney tissue, but not in brain or small intestine tissue. Through the immunofluorescence microscopy of skeletal muscle, we found that the expression level of VAMP5 varies among fibers. Most of the fibers with high expression levels of VAMP5 were categorized as type IIa fibers on the basis of their myosin heavy chain subtypes. In addition, the expression patterns of VAMP5 and glucose transporter 4 (GLUT4) were similar. In cardiac muscle, we determined that VAMP5 was localized to the vicinity of intercalated discs. These results suggest that VAMP5 plays local roles in membrane trafficking in skeletal and cardiac muscle.  相似文献   

10.
Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tβ4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ) and mdx mice, 8–10 weeks old, were treated with 150 µg of Tβ4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tβ4 and amount of fibrosis were quantified using immunohistochemistry and Gomori''s tri-chrome staining, respectively. Mdx mice treated with Tβ4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tβ4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tβ4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.  相似文献   

11.
Skinned muscle fibers prepared from fetal rabbit heart (28 days of gestation) showed a marked resistance to acidic pH in the Ca(2+) regulation of force generation, compared to the fibers prepared from adult heart. SDS-PAGE and immunoblot analysis showed that the slow skeletal troponin I was predominantly expressed in the fetal cardiac muscle, while the cardiac isoform was predominantly expressed in the adult cardiac muscle. Direct exchange of purified slow skeletal and cardiac troponin I isoforms into these skinned muscle fibers revealed that cardiac troponin I made the Ca(2+) regulation of contraction sensitive to acidic pH just as in the adult fibers, whereas slow skeletal troponin I made the Ca(2+) regulation of contraction resistant to acidic pH just as in the fetal fibers. These results demonstrate that the troponin I isoform switching accounts fully for the change in the pH dependence of Ca(2+) regulation of contraction in developmental cardiac muscle.  相似文献   

12.
Troponin C (TnC) was extracted from skinned skeletal muscle fibers by a method similar to that used previously on myofibrils (Zot, H.G., and Potter, J.D. (1982) J. Biol. Chem. 257, 7678-7683) and replaced with either skeletal (fast-twitch) or cardiac TnC. The relationship between isometric tension and Sr2+ concentration remained essentially the same before removal and after replacement with skeletal or cardiac TnC. Therefore, the origin of the TnC made no difference in the Sr2+ activation properties of the skinned fiber. In contrast, the activation of skinned cardiac fibers is approximately an order of magnitude more sensitive to Sr2+ than skinned skeletal fibers. These results show that the affinity of cardiac TnC for Sr2+ is altered when substituted into skinned skeletal muscle fibers through protein-protein interactions.  相似文献   

13.
14.
A lethal form of nemaline myopathy, named "Amish Nemaline Myopathy" (ANM), is linked to a nonsense mutation at codon Glu180 in the slow skeletal muscle troponin T (TnT) gene. We found that neither the intact nor the truncated slow TnT protein was present in the muscle of patients with ANM. The complete loss of slow TnT is consistent with the observed recessive pattern of inheritance of the disease and indicates a critical role of the COOH-terminal T2 domain in the integration of TnT into myofibrils. Expression of slow and fast isoforms of TnT is fiber-type specific. The lack of slow TnT results in selective atrophy of type 1 fibers. Slow TnT confers a higher Ca2+ sensitivity than does fast TnT in single fiber contractility assays. Despite the lack of slow TnT, individuals with ANM have normal muscle power at birth. The postnatal onset and infantile progression of ANM correspond to a down-regulation of cardiac and embryonic splice variants of fast TnT in normal developing human skeletal muscle, suggesting that the fetal TnT isoforms complement slow TnT. These results lay the foundation for understanding the molecular pathophysiology and the potential targeted therapy of ANM.  相似文献   

15.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

16.
We investigated the effect of pH on isometric tension in actin filament-reconstituted and thin filament-reconstituted bovine cardiac muscle fibers in the pH range of 6.0-7.4. Thin filament was reconstituted from purified G-actin with either bovine cardiac tropomyosin (Tm) or rabbit skeletal Tm in conjunction with cardiac or skeletal troponin (Tn). Results showed that isometric tension decreased linearly with a decrease in pH. The slope of the pH-tension relation, DeltaF/DeltapH (Deltarelative tension/Deltaunit pH), was 0.28 and 0.44 in control cardiac fibers and skeletal fibers, respectively. In actin filament-reconstituted fibers without regulatory proteins, DeltaF/DeltapH was 0.62, namely larger than that in cardiac or skeletal fibers. When reconstituted with cardiac Tm-Tn complex (nTm), DeltaF/DeltapH recovered to 0.32, close to the value obtained in control cardiac fibers. When reconstituted with skeletal nTm, DeltaF/DeltapH recovered to 0.48, close to the value for control skeletal fibers. To determine whether Tm or Tn is responsible for the inhibitory effects of nTm on the tension decrease caused by reduced pH, thin filament was reconstituted with cardiac Tm and skeletal Tn, or with skeletal Tm and cardiac Tn. When cardiac Tm was used, pH dependence of isometric tension coincided with that of control cardiac fibers. When skeletal Tm was used, the pH dependence coincided with that of control skeletal fibers. Furthermore, closely similar results were obtained in fibers reconstituted with actin and either cardiac or skeletal Tm without Tn. These results demonstrate that Tm but not Tn modulates the pH dependence of active tension.  相似文献   

17.
Lactate dehydrogenase (LDH) activity was histochemically localized in fibers of the vastus lateralis muscle of men and for comparative purpose in the soleus and plantaris muscleo of rats. Human muscle fibers were identified as fast twitch (FT) or slow twitch (ST) from the histochemical stain for myofibrillar adenosine triphosphatase activity. Rat skeletal muscle fibers were classified as fast-twitch-oxidative-glycolytic (FOG), fast-twitch-glycolytic (FG), or slow-twitch-oxidative (SO) on the basis of NADH-diaphorase and myofibrillar adenosine triphosphatase activities. Heart-type (H) LDH was identified by inhibition of the muscle-type (M) isozyme with 4 M urea. Total LDH as estimated histochemically was highest in the human FT and rat FG fibers. This was predominantly the M-LDH isozyme. ST fibers of human and SO fibers of rat skeletal muscle had the least total LDH but the most H-LDH activity. The FOG fibers of rat muscle contained a total LDH activity intermediate to that of the FG and SO fibers and a combination of H- and M-LDH. There were no fibers in the human muscle samples studied that had LDH activities similar to the FOG fibers of rat muscle.  相似文献   

18.
Myofibrillar myopathy caused by FLNC/filamin C mutations is characterized by disintegration of myofibrils and a massive formation of protein aggregates within skeletal muscle fibers. We performed immunofluorescence studies in skeletal muscle sections from filaminopathy patients to detect disturbances of protein quality control mechanisms. Our analyses revealed altered expression of chaperone proteins and components of proteasomal and autophagic degradation pathways in abnormal muscle fibers that harbor protein deposits but not in neighboring muscle fibers without pathological protein aggregation. These findings suggest a dysfunction of protein stabilizing and degrading mechanisms that leads to a pathological accumulation of protein aggregates in abnormal fibers. Accordingly, a pharmacological modulation of chaperone activity may be a promising therapeutic strategy to prevent protein aggregation and to reduce disease progression. Newly established filaminopathy cell culture models provide a suitable basis for testing such pharmacological approaches.  相似文献   

19.
AMP deaminase has been prepared from white skeletal muscle fibers, red skeletal muscle fibers, cardiac muscle and liver. The isozymes from skeletal muscle, cardiac muscle and liver can be readily distinguished from one another by the shape of the adenylate energy charge response curve. However, the enzyme prepared from different skeletal muscles which consists of predominately red or white fibers are indistinguishable from one another by this criterion.  相似文献   

20.
Sections from formalin-fixed muscle are stained 4-24 hr with a 0.05% solution of bromphenol blue in 2% acetic acid, rinsed with water and placed in 0.5% acetic acid for 5-10 min. They are then treated 30 sec with tap water substitute (KHCO3, 0.2 gm; MgSO4, 2 gm; distilled water, 100 ml), rinsed, dehydrated in alcohol, cleared in xylene and covered in a polystyrene mountant Striatums of both cardiac and skeletal muscle fibers are fully resolved under oil immersion, against the blue background of the other parts of the fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号