首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

2.
Alu Elements and the Human Genome   总被引:13,自引:0,他引:13  
Rowold DJ  Herrera RJ 《Genetica》2000,108(1):57-72
  相似文献   

3.
4.
Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.  相似文献   

5.
Over the past 60 million years, or so, approximately one million copies of Alu DNA repeats have accumulated in the genome of primates, in what appears to be an ongoing process. We determined the phylogenetic distribution of specific Alu (and other) DNA repeats in the genome of several primates: human, chimpanzee, gorilla, orangutan, baboon, rhesus, and macaque. At the population level studied, the majority of the repeats was found to be fixed in the primate species. Our data suggest that new Alu elements arise in unique, irreversible events, in a mechanism that seems to preclude precise excision and loss. The same insertions did not arise independently in two species. Once inserted and genetically fixed, the DNA elements are retained in all descendant lineages. The irreversible expansion of Alu s introduces a vector of time into the evolutionary process, and provides realistic (rather than statistical) answers to questions on phylogenies. In contrast to point mutations, the present distribution of individual Alu s is congruent with just one phylogeny. We submit that only irreversible and taxonomically relevant events are at the molecular basis of evolution. Most point mutations do not belong to this category.  相似文献   

6.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. To investigate the evolution of young Alu elements it is critical to have access to complete subfamilies, which, following the release of the final human genome assembly, can now be obtained using in silico methods.  相似文献   

7.
Alu repeats in the human genome   总被引:3,自引:0,他引:3  
Highly repetitive DNA sequences account for more than 50% of the human genome. The L1 and Alu families harbor the most common mammalian long (LINEs) and short (SINEs) interspersed elements. Alu elements are each a dimer of similar, but not identical, fragments of total size about 300 bp, and originate from the 7SL RNA gene. Each element contains a bipartite promoter for RNA polymerase III, a poly(A) tract located between the monomers, a 3'-terminal poly(A) tract, and numerous CpG islands, and is flanked by short direct repeats. Alu repeats comprise more than 10% of the human genome and are capable of retroposition. Possibly, these elements played an important part in genome evolution. Insertion of an Alu element into a functionally important genome region or other Alu-dependent alterations of gene functions cause various hereditary disorders and are probably associated with carcinogenesis. In total, 14 Alu families differing in diagnostic mutations are known. Some of these, which are present in the human genome, are polymorphic and relatively recently inserted into new loci. Alu copies transposed during ethnic divergence of the human population are useful markers for evolutionary genetic studies.  相似文献   

8.
Cis-acting influences on Alu RNA levels   总被引:1,自引:0,他引:1  
  相似文献   

9.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

10.
The majority of more than one million primate-specific Alu elements map to nonfunctional parts of introns or intergenic sequences. Once integrated, they have the potential to become exapted as functional modules, e.g., as protein-coding domains via alternative splicing. This particular process is also termed exonization and increases protein versatility. Here we investigate 153 human chromosomal loci where Alu elements were conceivably exonized. In four selected examples, we generated, with the aid of representatives of all primate infraorders, phylogenetic reconstructions of the evolutionary steps presumably leading to exonization of Alu elements. We observed a variety of possible scenarios in which Alu elements led to novel mRNA splice forms and which, like most evolutionary processes, took different courses in different lineages. Our data show that, once acquired, some exonizations were lost again in some lineages. In general, Alu exonization occurred at various time points over the evolutionary history of primate lineages, and protein-coding potential was acquired either relatively soon after integration or millions of years thereafter. The course of these paths can probably be generalized to the exonization of other elements as well.  相似文献   

11.
Repetitive elements are distributed non-randomly in the human genome but, as reviewed in this paper, biological processes underlying the observed patterns appear to be complex and remain relatively obscure. Recent findings indicate that chromosomal distribution of Alu retroelements deposited in the past is different from the distribution of Alu elements that continue to be inserted in human population. These active elements from AluY sub(sub)families are the major focus of this paper. In particular, we analyzed chromosomal proportions of 19 AluY subfamilies, of which nine are reported for the first time in this paper. These 19 subfamilies contain over 80% of Alu elements that are polymorphic in the human genome. The chromosomal density of these most recent Alu insertions is around three times higher on chromosome Y than on chromosome X and over two times higher than the average density for all human autosomes. Based on this observation and other data we propose that active Alu elements are passed through paternal germlines. There is also some evidence that a small fraction of active Alu elements from less abundant subfamilies can be retroposed in female germlines or in the early embryos. Finally, we propose that the origin of Alu subfamilies in human populations may be related to evolution of chromosome Y.  相似文献   

12.
The bulk of the human genome is ultimately derived from transposable elements. Observations in the past year lead to some new and surprising ideas on functions and consequences of these elements and their remnants in our genome. The many new examples of human genes derived from single transposon insertions highlight the large contribution of selfish DNA to genomic evolution.  相似文献   

13.
The past two years have seen the increased study of Y-chromosome polymorphisms and their relationship to human evolution and variation. Low Y-chromosome sequence diversity indicates that the common ancestor of all extant Y chromosomes lived relatively recently and the consensus of estimates of time to the most recent common ancestor concur with estimates of the mitochondrial DNA ancestor; but we do not know where this ‘Adam’ lived. Though the reason for low nucleotide diversity on the Y-chromosome remains unresolved, some of the mutations are proving highly informative in tracing human prehistoric migrations and are generating new hypotheses on human colonizations and migrations. The recent discovery of highly polymorphic microsatellites on the Y offers new possibilities for the investigation of more recent human evolutionary events, including the identification of male founders.  相似文献   

14.
Humans and chimpanzees share some 99% of DNA and amino acid identity, yet they exhibit important biomedical, morphological, and cognitive differences, difficult to accommodate within the remaining 1% of sequence diversity. Other types of genetic variation must be responsible for the taxonomic differences. Here we trace the evolution of AluYb8 repeats from a single origin at the roots of higher primates to a large increase in their number in humans. We identify nine AluYb8 DNA repeats in the chimpanzee genome compared to over 2200 repeats in the human, which represents a 250-fold increase in the rate of change in the human lineage and far outweighs the 99% sequence similarity between the two species. It is estimated that the average age of the human Yb8Alus is about 3.3 million years (My); almost 10% of them are identical in sequence, and hence are of recent origin. Genomic variations of this magnitude, distinguishing humans from great apes have not been realized. This explosive Alu expansion must have had a profound effect on the organization of our genome and the architecture of our chromosomes, inferentially altering profiles of gene expression and chromosome choreography in cell division. Additionally, we conclude that this major evolutionary process of Alu proliferation is driven by internal forces, written in the chemistry of DNA, rather than by external selection.  相似文献   

15.
Human cooperation represents a spectacular outlier in the animal world. Unlike other creatures, humans frequently cooperate with genetically unrelated strangers, often in large groups, with people they will never meet again, and when reputation gains are small or absent. Experimental evidence and evolutionary models suggest that strong reciprocity, the behavioral propensity for altruistic punishment and altruistic rewarding, is of key importance for human cooperation. Here, we review both evidence documenting altruistic punishment and altruistic cooperation and recent brain imaging studies that combine the powerful tools of behavioral game theory with neuroimaging techniques. These studies show that mutual cooperation and the punishment of defectors activate reward related neural circuits, suggesting that evolution has endowed humans with proximate mechanisms that render altruistic behavior psychologically rewarding.  相似文献   

16.
Alu elements are transposable elements that have reached over one million copies in the human genome. Some Alu elements inserted in the genome so recently that they are still polymorphic for insertion presence or absence in human populations. Recently, there has been an increasing interest in using Alu variation for studies of human population genetic structure and inference of individual geographic origin. Currently, this requires a high number of Alu loci. Here, we used a linker-mediated polymerase chain reaction method to preferentially identify low-frequency Alu elements in various human DNA samples with different geographic origins. The candidate Alu loci were subsequently genotyped in 18 worldwide human populations (approximately 370 individuals), resulting in the identification of two new Alu insertions restricted to populations of African ancestry. Our results suggest that it may ultimately become possible to correctly infer the geographic affiliation of unknown samples with high levels of confidence without having to genotype as many as 100 Alu loci. This is desirable if Alu insertion polymorphisms are to be used for human evolution studies or forensic applications.  相似文献   

17.
The Alu family of intersperesed repeats is comprised of ovr 500,000 members which may be divided into discrete subfamilies based upon mutations held in common between members. Distinct subfamilies of Alu sequences have amplified within the human genome in recent evolutionary history. Several individual Alu family members have amplified so recently in human evolution that they are variable as to presence and absence at specific loci within different human populations. Here, we report on the distribution of six polymorphic Alu insetions in a survey of 563 individuals from 14 human population groups across several continents. Our results indicate that these polymorphic Alu insertions probably have an African origin and that there is a much smaller amount of genetic variation between European populations than that found between other populations groups. Present address: Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Medical Center, 1901 Perdido St., New Orleans, LA 70112 Correspondence to: M.A. Batzer  相似文献   

18.
Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.  相似文献   

19.
20.
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号