首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
There has been much taxonomic confusion over the identification of Prosopis species, especially where introduced. Prosopis juliflora is the most widespread species in the arid and semi-arid tropics, although it has been confused with other species, particularly the closely related Prosopis pallida. In this study, RAPDs markers were used for the first time to distinguish between these species. Eighteen primers were used in amplification reactions, which yielded an average of 120 bands per accession. A dendrogram showing genetic similarities among accessions was constructed using UPGMA cluster analysis and the Nei and Li similarity coefficient. The genetic similarity observed between P. juliflora and P. pallida is similar to the value in sympatric Prosopis species in North America, and reconsideration of the series rank in section Algarobia is suggested. Species-specific markers confirmed that material in Burkina Faso is P. juliflora, but suggested that material collected in Brazil, Cape Verde and Senegal is P. pallida, whereas this has previously been identified as P. juliflora.  相似文献   

2.
The problems of delimitation of species of Prosopis originate from the few morphological discontinuities which exist among some of them; some, however, originated as a result of wide distribution of germplasm without proper knowledge of the species, in particular, much material catalogued as P. juliflora, but being of other species, was distributed for reforestation projects worldwide. This work tests the morphological results obtained for P. pallida and P. limensis of the Peruvian–Ecuadorian coast and for P. juliflora of the Caribbean Basin of Colombia and Venezuela utilizing a study of AFLPs and a study of the morphology of plantlets developed in a conventional garden study. The phenogram obtained for the AFLPs demonstrates each of the three species to be a well differentiated cluster and the molecular variance between them is significantly greater than the variance within each species. Study of the plantlets also indicates statistically significant differences for four morphological characters between P. juliflora and the other two species (P. pallida and P. limensis). These results, in addition to the morphological differentiation evident between adult plants of P. pallida and P. limensis and the clear separation of these two species from P. juliflora, corroborate the genetic identity of the three taxa analyzed.  相似文献   

3.
Echinacea laevigata (Boynton and Beadle) Blake is a federally endangered flowering plant species restricted to four states in the southeastern United States. To determine the population structure and outcrossing rate across the range of the species, we conducted AFLP analysis using four primer combinations for 22 populations. The genetic diversity of this species was high based on the level of polymorphic loci (200 of 210 loci; 95.24%) and Nei’s gene diversity (ranging from 0.1398 to 0.2606; overall 0.2611). There was significant population genetic differentiation (GST = 0.294; ӨII = 0.218 from the Bayesian f = 0 model). Results from the AMOVA analysis suggest that a majority of the genetic variance is attributed to variation within populations (70.26%), which is also evident from the PCoA. However, 82% of individuals were assigned back to the original population based on the results of the assignment test. An isolation by distance analysis indicated that genetic differentiation among populations was a function of geographic distance, although long-distance gene dispersal between some populations was suggested from an analysis of relatedness between populations using the neighbor-joining method. An estimate of the outcrossing rate based on genotypes of progenies from six of the 22 populations using the multilocus method from the program MLTR ranged from 0.780 to 0.912, suggesting that the species is predominantly outcrossing. These results are encouraging for conservation, signifying that populations may persist due to continued genetic exchange sustained by the outcrossing mating system of the species.  相似文献   

4.
The level and pattern of genetic variation was analyzed in four species of the fern genus Adiantum L., A. hispidulum Sw., A. incisum Forrsk., A. raddianum C.Presl, and A. zollingeri Mett. ex Kuhn, originating from South India, using the ISSR fingerprinting method. The populations of Adiantum possessed a considerable level of genetic variation, the diversity indices ranging from 0.284 to 0.464. Only 12% of the ISSR markers found were restricted to one species only, and 54% were detected in all four species. The analysis of molecular variance revealed that 71.1% of variation was present within populations. The proportion of variation detected among species was only 18.5% while the proportion of variation among populations within species equalled 10.4%. Despite the low level of intrageneric differentiation, the discriminant analysis and clustering of genetic distances indicated that the four Adiantum species are genetically distinct. The FST values calculated for the species were low, varying from 0.089 to 0.179. No linkage disequilibrium was detected between the loci. Such low level of differentiation among populations and the presence of linkage equilibrium reflect that the life history of Adiantum ferns apparently involves common or relatively common sexuality, effective wind-dispersal of spores and outcrossing.  相似文献   

5.
红松种子园种群表型多样性研究   总被引:2,自引:0,他引:2  
童跃伟  唐杨  陈红  张涛  左江  吴健  周莉  周旺明  于大炮  代力民 《生态学报》2019,39(17):6341-6348
为揭示红松(Pinus koraiensis Sieb.et Zucc.)不同种群的表型分化程度和变异规律,以吉林省露水河红松种子园6个种群红松为研究对象,采用巢式方差分析、多重比较、变异系数和聚类分析等方法对红松的叶片、球果和种子共15个表型性状进行了系统分析。结果表明:(1)红松15个表型性状在种群间和种群内均存在着极显著的差异,红松种群遗变异比较丰富,在松属植物中属于中等水平,其中纬度最低的露水河种群在其中10个表型性状均值上表现出最高值;(2)红松种群间的表型分化系数(Vst)均值为12.39%,种群内的变异(87.61%)大于种群间的变异(12.39%),种群内的变异是主要变异来源;(3)各表型性状平均变异系数为13.28%,变幅为6.16%-31.48%,叶片、球果、种子的平均变异系数依次为:球果17.86% > 针叶11.19% > 种子9.87%,种子性状最小,成为最稳定的表型性状,带岭和丰林种群表型性状遗传多样性要高于其他种群;(4)利用欧氏平均距离对红松种群进行UPGMA聚类分析,红松种群的表型性状按照地理距离而聚类,可将红松种子园6个种群分为4类,其表型性状跟地形(东北山脉)有一定的契合。红松种群具有中等水平的表型遗传多样性,种群间和种群内均存在丰富的表型变异,研究结果为顺利开展红松种质资源收集、保存,以及良种选育等工作提供依据。  相似文献   

6.
Cycas fairylakea is an endangered endemic species in China. Genetic diversity within and among four natural populations of this species in China was investigated using amplified fragments length polymorphism (AFLP). A moderate to low level of intraspecific genetic diversity was detected in this species (at population level: P = 39.57 %, H0 = 0.244; at species level: P = 60.22%, H0 = 0.356). The among-population component accounted for, respectively, 25.7 and 31.5% of the genetic variation, according to AMOVA and Shannon’s index, indicating most of the genetic variation was found between individuals within populations. All four populations have opposite pyramid age structure, and few coning individuals, which is still decreasing. Possibly because of habitat degradation and environmental pollution, plant diseases and insect pests in the populations were extremely serious, suggesting that the main factors threatening the survival of C. fairylakea populations were not genetic variation, but human activities and the breeding system of this species.  相似文献   

7.
田红红  杨菊  陆春云  肖枫  赵杨 《西北植物学报》2022,42(11):1927-1935
为深入了解贵州省野生皂荚(Gleditsia sinensis)荚果表型性状的遗传多样性及其变异类型,为皂荚的遗传改良、种质鉴定、亲本选择以及品种培育奠定理论基础。该研究以贵州省7个野生皂荚群体70个个体为研究对象,采用方差分析、主成分分析、相关性分析及多性状综合评价等方法对皂荚群体的10个种实表型性状进行系统分析和综合评价。结果显示:(1)所测皂荚的表型性状差异在群体内均达到极显著水平(P<0.01);在群体间,除每荚粒数、种子宽、种子长宽积以及种子长宽比之外,其余表型性状的差异均达极显著水平(P<0.01)。(2)7个居群野生皂荚各性状平均变异系数为21.16%,其中凯里市(P4)居群的变异系数最高(24.44%);居群间荚果的变异(29.22%)高于种子的变异(11.04%),且变异主要来自于群体内。(3)相关分析显示,皂荚种实各性状之间存在不同程度的关联性;主成分分析显示,前4个主成分(皂荚种子大小、单个荚果出籽数量、种子形态指数因子、与荚果长和种子厚相关的因子)的累积贡献率达69.783%,可基本反映皂荚表型性状的大部分信息;以10个种实性状对皂荚野生群体进行综合评价发现,来自于惠水县(P7)群体的皂荚种实性状综合评价最高。研究表明,贵州省野生皂荚在群体间及群体内具有丰富的表型变异,且群体内的变异大于群体间的变异,变异主要来自于群体内。  相似文献   

8.
RAPD fingerprinting was used to study species boundaries in narrowly distributed endemic species in Antirrhinum section Sempervirentia. Based on RAPD data, similarity values within species were relatively high but pair-wise similarity values among species were low. Partitioning of the overall RAPD variation using AMOVA showed that most of the variation was found among species (58.06%), whereas the remaining phenotypic diversity was distributed among populations (25.18%) and among individuals within populations (16.76%). Comparison of the matrices of geographical distances and phenetic distances (1-Dice index) among populations using the Mantel test showed a moderate, but statistically significant correlation (r=0.588, P < 0.01), suggesting that isolation by distance is responsible for the distribution of genetic variation among Antirrhinum populations. Phenetic relationships among Antirrhinum samples based on a Dice similarity matrix showed a clear taxonomic pattern, confirming the grouping of individuals within their own populations and the clustering of populations within species. Individuals of A. charidemi, A. valentinum and A. subbaeticum, from subsection Valentina, made up a discrete group, whereas the samples belonging to subsection Sempervirentia (A. petegasii, A. sempervirens, A. microphyllum, A. pulverulentum) clustered together. RAPD data are entirely congruent with the subsection classification scheme proposed by Fernández Casas (1997) in section Sempervirentia. However, A. subbaeticum, treated as a synonym of A. valentinum by Fernández-Casas (1997), showed an unique RAPD profile characterized by the highest number of fixed species-specific markers found in section Sempervirentia. Thus, although A. valentinum appeared the most closely related species to A. subbaeticum, molecular data suggested that this species merits taxonomic distinction.  相似文献   

9.
Levels and distribution of genetic variation were investigated in the homosporous fern, Polystichum munitum. Homosporous ferns differ from higher vascular plants in that they possess potentially bisexual gametophytes which can produce a completely homozygous sporophyte in a single generation. Because of this, it has long been maintained that ferns possess an inbreeding mating system, resulting in low levels of genetic variation and high levels of homozygosity within populations. The four populations sampled maintain high levels of genetic variation (P? = 0.542; H? = 0.111; ā = 2.23), comparable to that maintained by populations of outcrossing seed plants. The mean fixation index, F, for the four populations was 0.052, indicating no significant deviations from Hardy-Weinberg genotypic expectations. Polystichum munitum distributes most of its genetic variation within rather than among populations. Population-genetic structure was assessed by subdividing each of two large populations into 10 × 10-m subpopulations. Comparisons of genetic variation within and among subpopulations indicated little genetic substructure within either of the artificially subdivided populations. Estimates of interpopulational gene flow (Nm) are extremely high, comparable to those reported for gymnosperms. Statistical estimates of intragametophytic selling are very low, ranging from 0 to 3%. This study suggests that Polystichum munitum is an outcrossing species. Evidence from this and other investigations indicates that fern species do not typically self-fertilize and that mating systems in ferns vary as they do among species of seed plants.  相似文献   

10.
Amentotaxus, a genus of the Taxaceae, represents an ancient lineage that has long existed in Eurasia. All Amentotaxus species experienced frequent population expansion and contraction over periodical glaciations in Tertiary and Quaternary. Among them, Amentotaxus argotaenia complex consists of three morphologically alike species, A. argotaenia, Amentotaxus yunnanensis, and Amentotaxus formosana. This complex is distributed in the subtropical region of mainland China and Taiwan where many Pleistocene refugia have been documented. In this study, genetic diversity and population structuring within and between species were investigated based on the inter-simple sequence repeats (ISSR) fingerprinting. Mean genetic diversity within populations was estimated in three ways: (1) the percentage of polymorphic loci out of all loci (P) (2) Neis unbiased expected heterozygosity (He), and (3) Shannons index of phenotypic diversity. For a total of 310 individuals of 15 populations sampled from the three species, low levels of ISSR genetic variation within populations were detected, with P=4.66–16.58%, He=0.0176–0.0645 and Hpop=0.0263–0.0939, agreeing with their seriously threatened status. AMOVA analyses revealed that the differences between species only accounted for 27.38% of the total variation, whereas differences among populations and within populations were 57.70 and 14.92%, respectively, indicating substantial isolation between the patch-like populations. A neighbor-joining tree identified a close affinity between A. yunnanensis and A. formosana. Genetic drift due to small population size, plus limited current gene flow, resulted in significant genetic structuring. Low levels of intrapopulational genetic variation and considerable interpopulational divergence were also attributable to demographic bottlenecks during and/or after the Pleistocene glaciations.  相似文献   

11.
The genetic diversity and population structure of eighteenPotentilla fragariodes var.major (Rosaceae) populations in Korea were determined using genetic variations at 22 allozyme loci. The percent of polymorphic loci within the enzymes was 66.7%. Genetic diversity at the species level and at the population level was high (Hes = 0.203; Hep = 0.185, respectively), whereas the extent of the population divergence was relatively low (GST = 0.069). FIS, a measure of the deviation from random mating within the 18 populations, was 0.075. An indirect estimate of the number of migrants per generation (Nm = 3.36) indicated that gene flow was high among Korean populations of the species. In addition, analysis of fixation indices revealed a slight heterozygote deficiency in some populations and at some loci. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation. AlthoughP. fragariodes var.major usually propagated by asexually-produced ramets, we could not rule out the possibility that sexual reproduction occurred at a low rate because each ramet may produce terminal flowers. Mean genetic identity between populations was 0.983. It is highly probable that directional movement toward genetic uniformity in a relatively homogeneous habitat operates among Korean populations ofP. fragariodes var.major.  相似文献   

12.
Chen S  Xia T  Chen S  Zhou Y 《Biochemical genetics》2005,43(3-4):189-201
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.  相似文献   

13.
Random amplified polymorphic DNA (RAPD) markers were used to determine the levels and pattern of molecular variation in four populations of Elymus trachycaulus, and to estimate genetic similarity among different populations of E. trachycaulus from British Columbia and the Northwest Territories and one population of Elymus alaskanus from the Northwest Territories. Based on 124 RAPD bands (loci), mean percent polymorphic loci for E. trachycaulus (PP) was 67.4% (a range 41.2% to 86.3%), and mean gene diversity (He) for E. trachycaulus species was 0.23 (range 0.18 to 0.27). The total genetic diversity was 0.32. Differentiation among populations was 31% (FST = 0.31) with most of the genetic variation found within populations (69%). This pattern of genetic variation was different from that reported for inbred species in general.The authors are very grateful to Michael Bond for excellent Laboratory assistance, to Dr. Mary Barkworth for her encouragement. This study was supported by a Natural Science and Engineering Research Council (NSERC) discovery grant and by a Saint Marys University Internal grant to G.S.  相似文献   

14.
Allozyme variation at eleven loci encoding seven enzyme systems were examined in 20 populations of diploid (genome AA, 2n = 16)Scilla scilloides in China. In comparison with the average species of seed plants studied, populations of this species display a high amount of genetic variation (A = 2.0, P = 58.6%, Ho = 0.172, and He = 0.185). Allozyme variation pattern revealed predominant outcrossing within populations and considerable differentiation (FST = 0.314) among populations as well as between the subtropic and temperate regions. The wide distribution, long existence and outcrossing are presumably the main factors responsible for the high genetic diversity within populations. But the gravity dispersal of seeds and pollination by small insects set limits to the increase of genetic variation within populations and promote differentiation between populations and regions. In addition, allozyme variation does not distinguishS. scilloides var.albo-viridis and suggests that subtropic populations may be considered as a genetic entity.  相似文献   

15.
Twelve natural populations of four cedar pine species,Pinus sibirica, P. cembra, P. pumila, andP. koraiensis, occurring in the Soviet Union were investigated by starch-gel electrophoresis. Frequencies of 55 alleles at 19 loci were determined. Interpopulation genetic diversity inP. sibirica andP. pumila was only 2–4 per cent of the total genetic diversity. Nei's distance coefficient (Dn) was used to estimate the level of genetic differentiation among conspecific populations and among species. Dn values among populations ranged from 0.006 to 0.038. A dendrogram constructed using Dn values divided cedar pines species into 2 clusters:sibirica-cembra (Dn = 0.030) andpumila-koraiensis (Dn = 0.143). Nei's distance between these clusters was 0.232. On the basis of the data obtained it was possible to draw the following conclusion:P. sibirica, P. pumila, andP. koraiensis are distinct species, whileP. cembra should apparently be regarded as geographicalP. sibirica race.  相似文献   

16.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 785–792 [译自: 植物生态学报, 2005, 29(5): 785–792]  相似文献   

17.
Allozyme variation was studied in all nine diploidErigeron species known from the Alps:E. alpinus, E. neglectus, E. polymorphus, E. candidus, E. uniflorus, E. atticus, E. gaudinii, E. acer, andE. angulosus. A total of 248 individuals from 24 natural populations was investigated using starch gel electrophoresis. Seven enzymes and 13 loci were assessed. Genetic variation within populations was low with the proportion of polymorphic loci ranging from 0.0–0.385, and average number of alleles per polymorphic locus from 2.0–2.5. In general, 70–100% of the genetic variation was attributed to between population differences. Mean genetic identities for pair-wise comparisons of populations averaged 0.893 within species, and 0.890 among species. Interspecific genetic variation of populations usually did not exceed intraspecific variation. It was concluded that theErigeron species from the Alps may have arisen by recent speciation probably during the epoches of glaciation. Morphological and ecological differences between species seem to be based on few gene loci.  相似文献   

18.
Abstract: In the present study, we evaluated the genetic diversity of Panax notoginseng F H Chen, a domesticated species, and P. stipuleanatus H T Tsai et K M Feng, an endangered wild species in southeastern Yunnan and adjacent areas in Vietnam, using sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA and amplified fragment length polymorphism (AFLP) markers. Twenty‐four accessions from three plantations of P. notoginseng and 51 samples from eight populations of P. stipuleanatus were assayed. A total of 694 bp of partial sequences of 18S, ITS 1, 5.8S, ITS2, and partial sequences of 26S were obtained. No sequence variation was detected within P. notoginseng and nine sites (1.30%) were variable in P. stipuleanatus. Two‐thirds of the variable sites were found between Langqiao and other populations. In P. notoginseng, four pairs of AFLP primer combinations generated 312 bands, of which 240 (76.9%) were polymorphic and 60.15% of the polymorphisms were harbored within plantations. Approximately 41.0% and 66.9% of bands were polymorphic in population D7 and 5589, respectively. In P. stipuleanatus, the same four primer combinations produced 346 bands, of which 334 (96.5%) were polymorphic and approximately 62.14% of polymorphisms were maintained within populations. Considerable variations were observed. The percentage of polymorphic bands ranged from 50.2% to 84.9% and the average over populations was 70.9%. Cluster analysis did not show correlation of genetic differentiation with the distinctive leaf morphology of P. stipuleanatus(i.e. one form with bipinnatifid leaflets and the other with undivided leaflets). Because over 40% of genetic variations were maintained among populations and because of the very restricted distribution of P. stipuleanatus, all natural populations of this species should be conserved in situ. Considering that there are variations in P. notoginseng within and among plantations, we suggest establishing a genetic resource conservation garden or reintroducing P. notoginseng into its native habitats in southwestern China. Such reintroduction should be carefully executed after large‐scale screening of genetic variation within the species. ( Managing editor: Li‐Hui ZHAO 1 )  相似文献   

19.
Bouteloua gracilis (blue grama grass) native populations have been shown to be highly variable, however the genetic basis of this variability has not been well established. Determining the extent of genetic variability within and among plant populations have important repercussions for the management and conservation of species, and in particular for those subjected to intensive use such as forage plants. Using RAPD, this study was undertaken to investigate the genetic variability of four B. gracilis native populations developed in three grasslands and one shrubland at the southernmost part of the North American Graminetum in México. Significant differences in grass aboveground production were found among the study sites, while considerable genetic variation within each of the four blue grama populations evaluated was detected. The molecular analysis, based on 55 individuals, revealed a total of 108 scorable repeatable bands, with 99 of them being polymorphic (overall polymorphism= 91.7%). Within every population each individual was genetically distinct and no population-specific bands (fixed marker differences) were identified. Pair-wise Φ ST comparisons indicated that the four blue grama populations examined were significantly different in their genetic constitution (P<0.001). AMOVA revealed that most of the genetic variation detected in Bouteloua gracilis was explained by intra- (88.53%), rather than by inter-population (11.47%) differences. UPGMA based on the Φ ST values indicated that the blue grama population collected from the shrubland displayed the RAPD profiles that most differed among the study sites. Possible causes of these results could reside on intensive grazing reducing, and proper management conserving, the forage production and genetic diversity of blue grama native populations. Our results are consistent with previous studies analyzing population genetic variation in outcrossing grasses and, in particular, with ecological and cytological evidence for a high genetic variability in native populations of B. gracilis. The implications of our findings and prospective studies to be undertaken using molecular tools in the study of blue grama biology and ecology are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We examined 1140 bp of the mitochondrial cytochrome b gene and 1398 bp of the nuclear RAG2 gene to investigate the systematics of the eight species of bats within the family Mormoopidae. It was concluded that within the genus Pteronotus there were four valid subgenera: Phyllodia, Chilonycteris, Pteronotus, and an undescribed subgenus. Within Pteronotus, P. parnellii either was part of an unresolved tetratomy with the other three subgenera (cytochrome b data) or was basal (RAG2 and combined data). For three species, P. gymnonotus, P. macleayii, and P. quadridens, our sample revealed little geographic variation. In P. davyi and P. parnellii, the magnitude of genetic distance suggests the possibility of two biological species existing within the currently recognized taxa. Within P. personatus, there was substantial geographic variation partitioned in a step-like fashion among our specimens. Neither of the species within the genus Mormoops showed the deep distance nodes present in P. davyi, P. parnellii, and P. personatus. Cytochrome b and RAG2 data indicated that M. megalophylla evolved recently from its common ancestor. Although there was considerable agreement among the branching patterns for the nuclear and mitochondrial genes, both genes failed to provide robust data concerning the evolutionary relationships among the subgenera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号