首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MIT domainia   总被引:1,自引:0,他引:1  
The AAA ATPase Vps4 disassembles the membrane-bound ESCRT-III lattice. Four recent publications show how Vps4 carries out this task in a partnership with another ESCRT-associated protein, Vta1. Vps4 and Vta1 both contain MIT domains, which bind to "MIT-interacting motifs" (MIMs) of ESCRT-III proteins. As new MIT domain proteins are rapidly being identified, these studies will likely have relevance well beyond Vps4.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) has been shown to exhibit a specific basolateral release in polarized epithelial cells. Previous investigators have used vaccinia virus recombinants expressing HIV proteins to demonstrate that virus release is nonpolarized in the absence of viral envelope glycoproteins. In this study, we developed a transient expression system which allows the use of Madin-Darby canine kidney polarized epithelial cells directly grown on semipermeable membranes. This procedure allowed us to investigate polarized HIV viral budding following introduction of proviral DNA constructs. Expression of env gene products in trans demonstrated the ability to polarize env-negative viruses in a dose-dependent manner. The targeting signal for polarized virus release was shown to be present in the envelope gp41 transmembrane protein and absent from the gp120 portion of env. At least part of this signal is within the gp41 intracytoplasmic domain. Mutants of the p17gag matrix protein were shown to be nonpolarized only when unable to interact with the envelope glycoproteins. Together, these data are consistent with a model of polarized virus budding in which capsid proteins, lacking a targeting signal, are targeted for specific basolateral release via an interaction of p17 with the envelope glycoprotein containing the polarization signal in its intracytoplasmic domain.  相似文献   

3.
In addition to supporting cell survival in response to starvation or stress, autophagy promotes basal protein and organelle turnover. Compared to our understanding of stress-induced autophagy, little is known about how basal autophagy is regulated and how its activity is coordinated with other cellular processes. We recently identified a novel interaction between the ATG12–ATG3 conjugate and the ESCRT-associated protein PDCD6IP/Alix that promotes basal autophagy and endolysosomal trafficking. Moreover, ATG12–ATG3 is required for diverse PDCD6IP-mediated functions including late endosome distribution, exosome secretion, and viral budding. Our results highlight the importance of late endosomes for basal autophagic flux and reveal distinct roles for the core autophagy proteins ATG12 and ATG3 in controlling late endosome function.  相似文献   

4.
The protein network of HIV budding   总被引:38,自引:0,他引:38  
HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.  相似文献   

5.
Macrophages play a significant role in HIV infection, viral rebound, and the development of AIDS. However, the function of host proteins in viral replication is incompletely characterized in macrophages. Purinergic receptors P2X and P2Y are major components of the macrophage immune response to pathogens, inflammation, and cellular damage. We demonstrate that these receptors are necessary for HIV infection of primary human macrophages. Inhibition of purinergic receptors results in a significant reduction in HIV replication in macrophages. This inhibition is independent of viral strain and is dose dependent. We also identify that P2X(1), P2X(7), and P2Y(1) receptors are involved in viral replication. We show that P2X(1), but not P2X(7) or P2Y(1), is necessary for HIV entry into macrophages. We demonstrate that interaction of the HIV surface protein gp120 with macrophages stimulates an increase in ATP release. Thus, we propose that HIV's binding to macrophages triggers a local release of ATP that stimulates purinergic receptors and facilitates HIV entry and subsequent stages of viral replication. Our data implicate a novel role for a family of host proteins in HIV replication in macrophages and suggest new therapeutic targets to reduce the devastating consequences of HIV infection and AIDS.  相似文献   

6.
7.
Lipid rafts are specialized regions of cell membranes enriched in cholesterol and sphingolipids that are involved in immune activation and signaling. Studies in T-cells indicate that these membrane domains serve as sites for release of human immunodeficiency virus (HIV). By budding through lipid rafts in T-cells, HIV selectively incorporates raft markers and excludes non-raft proteins. This process has been well studied in T-cells, but it is unknown whether lipid rafts serve as budding sites for HIV in macrophages. Recently, we proposed a new model of retroviral biogenesis called the Trojan exosome hypothesis (Gould, S. J., Booth, A., and Hildreth, J. E. K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10592-10597). This model proposes that retroviruses coopt the existing cellular machinery for exosomal release. Here, we performed the first test designed to differentiate between the lipid raft hypothesis of retroviral biogenesis and the Trojan exosome hypothesis. Using macrophages, we examined the relative abundance of several host proteins on the cell surface, in lipid rafts, and on both HIV particles and exosomes derived from these cells. Our results show significant differences in the abundance of host proteins on the cell surface and in HIV. Moreover, our data demonstrate discordance in the abundance of some proteins in lipid rafts and in HIV. Finally, our data reveal a strong concordance between the host cell protein profile of exosomes and that of HIV. These results strongly support the Trojan exosome hypothesis and its prediction that retroviral budding represents exploitation of a pre-existing cellular pathway of intercellular vesicle trafficking.  相似文献   

8.
Alveolar macrophages represent critical effector cells of innate immunity to infectious challenge in the lungs and recognize bacterial pathogens through pattern recognition receptors such as Toll-like receptors (TLRs). Phosphatidylinositol 3-kinase (PI3K) regulates TLR-mediated cytokine release, but whether HIV infection influences PI3K signaling pathway and alters TLR4-mediated macrophage response has not been investigated. In the current study, surface TLR4 expression were similar but TLR4 activation (lipid A, 10 microg/ml) resulted in lower TNF-alpha release by HIV+ human macrophages compared with healthy cells. Pharmacological inhibition of PI3K (LY294002) normalized TNF-alpha release in HIV+ macrophages and augments ERK1/2 mitogen-activated protein kinase phosphorylation in response to lipid A. Importantly, HIV+ macrophages demonstrated increased constitutive phosphatidylinositol 3,4,5-trisphosphate formation, increased phosphorylation of downstream signaling molecules Akt and glycogen synthase kinase-3beta (GSK-3beta) at Ser9, and reduced PTEN protein expression. As a functional assessment of GSK-3beta phosphorylation, TLR4-mediated interleukin-10 release was significantly higher in HIV+ human macrophages compared with healthy cells. Incubation of human macrophages with exogenous HIV Nef protein induced phosphorylation of Akt and GSK-3beta (whereas phosphorylation was reduced by PI3K inhibition) and promoted interleukin-10 release. Taken together, these data demonstrate increased constitutive activation of the PI3K signaling pathway in HIV+ macrophages and support the concept that PI3K activation (by HIV proteins such as Nef) may contribute to reduced TLR4-mediated TNF-alpha release in HIV+ human macrophages and impair host cell response to infectious challenge.  相似文献   

9.
Dynamic modification of endosomal cargo proteins, such as the epidermal growth factor receptor, by ubiquitin can regulate their sorting into the lumen of multivesicular bodies through interactions with a complex protein network incorporating the endosomal sorting complexes required for transport (ESCRTs). Two deubiquitinating enzymes, AMSH and UBPY, interact with ESCRT protein components but exert opposite effects upon the rate of epidermal growth factor receptor downregulation. This might reflect their distinct specificities for different types of polyubiquitin chain linkage. We propose that AMSH might rescue ubiquitinated cargo from lysosomal degradation through disassembly of K63-linked polyubiquitin chains. UBPY function is essential for effective downregulation but is likely to be multifaceted, encompassing activity against both K63-linked and K48-linked polyubiquitin chains and including regulation of the stability of ESCRT-associated proteins such as STAM, by reversing their ubiquitination.  相似文献   

10.
HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.  相似文献   

11.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6gag domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

12.
Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs). MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.  相似文献   

13.
Host HLA class I (HLA-I) allele-associated immune responses are major forces driving the evolution of HIV-1 proteins such as Gag and Nef. The viral protein U (Vpu) is an HIV-1 accessory protein responsible for CD4 degradation and enhancement of virion release by antagonizing tetherin/CD317. Although Vpu represents one of the most variable proteins in the HIV-1 proteome, it is still not clear to what extent HLA-I influence its evolution. To examine this issue, we enrolled 240 HLA-I-typed, treatment naïve, chronically HIV-infected subjects in Japan, and analyzed plasma HIV RNA nucleotide sequences of the vpu region. Using a phylogenetically-informed method incorporating corrections for HIV codon covariation and linkage disequilibrium among HLA alleles, we investigated HLA-associated amino acid mutations in the Vpu protein as well as in the translational products encoded by alternative reading frames. Despite substantial amino acid variability in Vpu, we identified only 4 HLA-associations in all possible translational products encoded in this region, suggesting that HLA-associated immune responses had minor effects on Vpu variability in this cohort. Rather, despite its size (81 amino acids), Vpu showed 103 codon–codon covariation associations, suggesting that Vpu conformation and function are preserved through many possible combinations of primary and secondary polymorphisms. Taken together, our study suggests that Vpu has been comparably less influenced by HLA-I-associated immune-driven evolution at the population level compared to other highly variable HIV-1 accessory proteins.  相似文献   

14.
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.  相似文献   

15.
16.
As a mechanism of signal attenuation, receptors for growth factors, peptide hormones and cytokines are internalized in response to ligand binding, followed by degradation in lysosomes. Receptor ubiquitination is a key signal for such downregulation, and four protein complexes known as endosomal sorting complex required for transport (ESCRT)-0, -I, -II and -III have been identified as the machinery required for degradative endosomal sorting of ubiquitinated membrane proteins in yeast and metazoans. Three of these complexes contain ubiquitin-binding domains whereas ESCRT-III instead recruits deubiquitinating enzymes. The concerted action of the ESCRTs not only serves to sort ubiquitinated cargo but is also thought to cause inward vesiculation of endosomal membranes, thereby mediating biogenesis of multivesicular endosomes (MVEs). Because ligand-mediated receptor downregulation plays an important role in signal attenuation, it is not surprising that dysfunction of ESCRT components is associated with disease. In this review we discuss the possible roles of ESCRTs in protection against cancer, neurodegenerative diseases and bacterial infections, and we highlight the fact that many RNA viruses exploit the ESCRT machinery for the final abscission step of their budding from cells. We also review the additional functions of ESCRT proteins in cytokinesis and discuss how these may be related to ESCRT-associated pathologies.  相似文献   

17.
The interaction of blood serum immunoglobulins of M, G, and A classes of the donors with monospecific serums (MSS)-anti-IgM, anti-IgG and anti-IgG was established to be associated by Ag(+)-sensitive-SH containing non protein compounds release. This phenomenon formation should be related to a parallel running associated reaction mediated by conformational and/or some other changes of immunoglobulins macrostructure under highly specific intermolecular interaction with adequate MSS in the reactive mixtures. As a rule these processes are associated by the break and reduction of mixed disulphide bounds between thiol containing nonprotein compounds and proteins. HIV antigen glycoproteins and morphine preliminary introduced into the analogic reactive mixtures were found to block this phenomenon. If in these reactive mixtures the serums including three serotypes hepatitis B virus antigen is introduced this phenomenon is preserved. This effect of HIV antigen glycoproteins and morphine could be explained by their direct and/or mediated influence on the immunoglobulins macrostructure. As a result of the latter the immunoglobulins structure-functional status is infringed, being indirectly evidenced by absence of the associated reaction of release Ag(+)-sensitive-SH containing non protein compounds in the reactive mixtures. The processes presented are capable to play an essential role in formation of polyclonal gammapathy under HIV-infection.  相似文献   

18.
Studies examining positive selection on accessory proteins of HIV are rare, although these proteins play an important role in pathogenesis in vivo. Moreover, despite the biological relevance of analyses of molecular adaptation after viral transmission between species, the issue is still poorly studied. Here we present evidence that accessory proteins are subjected to positive selective forces exclusively in HIV. This scenario suggests that accessory protein genes are under adaptive evolution in HIV clades, while in SIVcpz such a phenomenon could not be detected. As a result, we show that comparative studies are critical to carry out functional investigation of positively selected protein sites, as they might help to achieve a better comprehension of the biology of HIV pathogenesis.  相似文献   

19.
20.
Independent isolates of human immunodeficiency virus (HIV) exhibit a striking genomic diversity, most of which is located in the viral envelope gene. Since this property of the HIV group of viruses may play an important role in the pathobiology of the virus, we analyzed the predicted amino acid sequences of the envelope proteins of seven different HIV strains, three of which represent sequential isolates from a single patient. By using a computer program that predicts the secondary protein structure and superimposes values for hydrophilicity, surface probability, and flexibility, we identified several potential antigenic epitopes in the envelope proteins of the seven different viruses. Interestingly, the majority of the predicted epitopes in the exterior envelope protein (gp120) were found in regions of high sequence variability which are interspersed with highly conserved regions among the independent viral isolates. A comparison of the sequential viral isolates revealed that changes concerning the secondary structure of the protein occurred only in regions which were predicted to be antigenic, predominantly in highly variable regions. The membrane-associated protein gp41 contains no highly variable regions; about 80% of the amino acids were found to be conserved, and only one hydrophilic area was identified as likely to be accessible to antibody recognition. These findings give insight into the secondary and possible tertiary structure of variant HIV envelope proteins and should facilitate experimental approaches directed toward the identification and fine mapping of HIV envelope proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号