首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Naumova  E. S.  Korshunova  I. V.  Naumov  G. I. 《Molecular Biology》2003,37(5):699-706
To infer the molecular evolution of yeast Saccharomyces sensu stricto from analysis of the -galactosidase MEL gene family, two new genes were cloned and sequenced from S. bayanus var. bayanus and S. pastorianus. Nucleotide sequence homology of the MEL genes of S. bayanus var. bayanus (MELb), S. pastorianus (MELpt), S. bayanus var. uvarum (MELu), and S. carlsbergensis (MELx) was rather high (94.1–99.3%), comparable with interspecific homology (94.8–100%) of S. cerevisiae MEL1-MEL11. Homology of the MEL genes of sibling species S. cerevisiae (MEL1), S. bayanus (MELb), S. paradoxus (MELp), and S. mikatae(MELj) was 76.2–81.7%, suggesting certain species specificity. On this evidence, the -galactosidase gene of hybrid yeast S. pastorianus (S. carlsbergensis) was assumed to originate from S. bayanus rather than from S. cerevisiae.  相似文献   

2.
The first report of complete nucleotide sequences for α- and β-globin chains from the Siamese hemoglobin (Crocodylus siamensis) is given in this study. The cDNAs encoding α- and β-globins were cloned by RT-PCR using the degenerate primers and by the rapid amplification of cDNA ends method. The full-length α-globin cDNA contains an open reading frame of 423 nucleotides encoding 141 amino acid residues, whereas the β-globin cDNA contains an open reading frame of 438 nucleotides encoding 146 amino acid residues. The authenticity of both α- and β-globin cDNA clones were also confirmed by the heterologous expression in Escherichia coli (E. coli). This is the first time that the recombinant C. siamensis globins were produced in prokaryotic system. Additionally, the heme group was inserted into the recombinant proteins and purified heme-bound proteins were performed by affinity chromatography using Co2+-charged Talon resins. The heme-bound proteins appeared to have a maximum absorbance at 415 nm, indicated that the recombinant proteins bound to oxygen and formed active oxyhemoglobin (HbO2). The results indicated that recombinant C. siamensis globins were successfully expressed in prokaryotic system and possessed an activity as ligand binding protein.  相似文献   

3.
4.
5.
以藏羚羊(Pantholops hodgsonii)及同海拔分布的藏系绵羊(Tibetan Sheep)的心肌组织为材料,提取总RNA,利用逆转录聚合酶链反应(RT-PCR)技术扩增出过氧化物酶体增生物激活受体γ辅激活因子-1α(PGC-1α)的基因编码区cDNA片段,与载体连接构建重组质粒,经转化、扩增培养、鉴定后测序.利用生物信息学方法分析显示,藏羚羊和藏系绵羊的PGC-1α基因编码区长度均为2 349 bp,编码797个氨基酸(GenBank登录号分别为:JF449959和JF449960);与其他脊椎动物PGC-1α基因的核苷酸及氨基酸序列相似性达到90%以上;其包含RNA/DNA结合位点、RNA识别基序(RRM)、与核呼吸因子1( NRF-1)及肌细胞增强因子2C(MEF2C)相互作用的区域、富含丝氨酸/精氨酸的结构域、负调节功能结构域、LXXLL模体以及TPPTTPP和DHDYCQ两个保守序列,14个氨基酸差异性位点位于以上部分功能结构域中;此外,磷酸化位点的预测提示藏羚羊可能存在一个潜在的蛋白激酶G的磷酸化位点(第329位的苏氨酸).本研究成功克隆出了藏羚羊PGC-1α基因的编码区序列,为从能量代谢角度深入探讨藏羚羊适应高原的分子生物学机制提供了新的思路.  相似文献   

6.
Redondo RA  Santos FR 《Genetica》2006,126(1-2):199-213
Comparative studies of salivary glands showed that they maybe related to the adaptive radiation of bats, especially in the family Phylostomidae. In this study we have been searching for a likely relationship between different feeding habits found in bats and possible adaptive changes in a coding segment of the α-amylase enzyme. We have also tested some hypothesis about the phylogenetic relationship of bats and other mammals. A 663 bp segment of the α-amylase gene, corresponding to the exon 4 and part of the intron c, was sequenced in nine bat species. The exon 4 was also sequenced in further ten mammalian species. The phylogenetic trees generated with different methods produced the same results. When the intron c and the exon 4 were independently analyzed, they showed distinct topologies involving the bat species Sturnira lilium, different from the traditional bat phylogeny. Phylogenetic analysis of bats, primates and rodents supports the Euarchontoglires-Laurasiatheria hypothesis about the relationship among these groups. Selection tests showed that the α-amylase exon 4 is under strong purifying selection, probably caused by functional constraints. The conflicting bat phylogenies could not be explained by evolutionary convergence due to adaptive forces, and the different topologies may be likely due to the retention of plesiomorphic characters or the independent acquisition by evolutionary parallelism.  相似文献   

7.
SYNTHESIS of the α and β-chains for haemoglobin is dictated by independent genetic loci. The first evidence for this notion came from Smith and Torbert's observation that inheritance of haemoglobin Hopkins-2 (Ho-2) was independent from that of haemoglobin S1 and that Ho-2 was an α-chain variant2. We wish to report the amino-acid replacements involved. These structural changes establish the presence of at least two α-chain genes in man. Some physical and physiological properties of the abnormal haemoglobin and the clinical status of carriers, have been reported in another article3.  相似文献   

8.
9.
10.
The proteinaceous α-amylase inhibitor, T-76, gene was cloned by screening a Streptomyces nitrosporeus genomic library using a deoxyinosine-containing probe corresponding to the amino acid sequence of the inhibitor. The nucleotide sequence of the insert of a positive clone had an open reading frame of 330 bp that encoded a polypeptide of 110 amino acid residues with a calculated molecular mass of 11,306 daltons. The polypeptide begins with proximal basic amino acids and a region rich in hydrophobic amino acids that possibly act as a signal peptide for secretion, which is followed by a sequence consistent with the amino-terminal amino acid sequence of the T-76 inhibitor. Escherichia coli cells harboring the plasmid derivatives for expression produced the inhibitor in their periplasmic space. The amino-terminal sequence of the inhibitor produced by an E. coli transformant was identical to that of the T-76 inhibitor secreted by S. nitrosporeus. The amino acid sequence of the inhibitor deduced from nucleotide sequence showed significant homology to other proteinaceous α-amylase inhibitors.  相似文献   

11.
N. Inomata  H. Shibata  E. Okuyama    T. Yamazaki 《Genetics》1995,141(1):237-244
To infer the genealogical relationships of α-amylase electromorphs of Drosophila melanogaster, we determined the nucleotide sequences of a collection of electromorphs sampled throughout the world. On average there were 1.0 amino acid substitutions between identical electromorphs and 3.9 between different electromorphs, respectively. We found that the evolution of AMY(1) through AMY(6) electromorphs occurred by sequential accumulation of single amino acid substitutions each causing one charge difference. The nucleotide diversities at synonymous sites within Amy(1),Amy(2),Amy(3),Amy(4) and Amy(6) were 0.0321, 0.0000, 0.0355, 0.0059 and 0.0030, respectively. We also obtained evidence of genetic exchanges, such as intrachromosomal recombination, interchromosomal recombination or gene conversion, between the two duplicated Amy genes as well as among the alleles.  相似文献   

12.
Human adult haemoglobin consists of two unlike pairs of polypeptide chains, and can be described as α2β2. Amino-acid substitutions in either of the two types of chain result in α- and β-chain variants. In thalassaemia, which causes a lowered production of haemoglobin, the α or the β chain can be affected, the result being α- or β-thalassaemia. There is a quantitative difference in the proportion of α- and β-chain variants to normal haemoglobin in the respective heterozygotes, and there is also a difference in the pattern of inheritance of α- and β-thalassaemia: these could possibly be explained by assuming that man has one gene for the β- and two for the α-chain.  相似文献   

13.
A cloned alpha-amylase cDNA sequence from the mouse is homologous to a small set of DNA sequences from Drosophila melanogaster under appropriate conditions of hybridization. A number of recombinant lambda phage that carry homologous Drosophila genomic DNA sequences were isolated using the mouse clone as a hybridization probe. Putative amylase clones hybridized in situ to one or the other of two distinct sites in polytene chromosome 2R and were assigned to one of two classes, A and B. Clone lambda Dm32, representing class A, hybridizes within chromosome section 53CD. Clone lambda Dm65 of class B hybridizes within section 54A1-B1. Clone lambda Dm65 is homologous to a 1450- to 1500-nucleotide RNA species, which is sufficiently long to code for alpha-amylase. No RNA homologous to lambda Dm32 was detected. We suggest that the class B clone, lambda Dm65, contains the functional Amy structural gene(s) and that class A clones contain an amylase pseudogene.  相似文献   

14.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   

15.
In animal olfactory systems, odorant molecules are detected by olfactory receptors (ORs). ORs are part of the G-protein-coupled receptor (GPCR) superfamily. Heterotrimeric guanine nucleotide binding G-proteins (G-proteins) relay signals from GPCRs to intracellular effectors. G-proteins are comprised of three peptides. The G-protein α subunit confers functional specificity to G-proteins. Vertebrate and insect Gα-subunit genes are divided into four subfamilies based on functional and sequence attributes. The nematode Caenorhabditis elegans contains 21 Gα genes, 14 of which are exclusively expressed in sensory neurons. Most individual mammalian cells express multiple distinct GPCR gene products, however, individual mammalian and insect olfactory neurons express only one functional odorant OR. By contrast C. elegans expresses multiple ORs and multiple Gα subunits within each olfactory neuron. Here we show that, in addition to having at least one member of each of the four mammalian Gα gene classes, C. elegans and other nematodes also possess two lineage-specific Gα gene expansions, homologues of which are not found in any other organisms examined. We hypothesize that these novel nematode-specific Gα genes increase the functional complexity of individual chemosensory neurons, enabling them to integrate odor signals from the multiple distinct ORs expressed on their membranes. This neuronal gene expansion most likely occurred in nematodes to enable them to compensate for the small number of chemosensory cells and the limited emphasis on cephalization during nematode evolution. [Reviewing Editor: Dr. John Oakeshott] Damien M. O’Halloran and David A. Fitzpatrick contributed equally to this work.  相似文献   

16.
Abstract

Nucleotide sequences of the exon-intron junction in human α- And δ-globin genes were analyzed by the quantification method proposed previously. We further studied several mutants of α- and δ- thalassemiaso, where mutational changes occur around the 5′-splice junction of the first intron. These changes abolish the normal 5′-splice site completely, but activate a cryptic site lying in the first exon. Such behaviours were well explained in terms of our quantification analysis.  相似文献   

17.
Abstract

The vast number of proteins that sustain the currently living organisms have been generated from a relatively small number of ancestral genes that has involved a variety of processes. Lysozyme is an ancient protein whose origin goes back an estimated 400 to 600 million years. This protein was originally a bacteriolytic defensive agent and has been adapted to serve a digestive function on at least two occasions, separated by nearly 40 million years. The origins of the related goose type and T4 phage lysozyme that are distinct from the more common C type are obscure. They share no discernable amino acid sequence identity and yet they possess common secondary and tertiary structures. Lysozyme C gene also gave rise, after gene duplication 300 to 400 million years ago, to a gene that currently codes for α-lactalbumin, a protein expressed only in the lactating mammary gland of all but a few species of mammals. It is required for the synthesis of lactose, the sugar secreted in milk. α-Lactalbumin shares only 40% identity in amino acid sequence with lysozyme C, but it has a closer spatial structure and gene organization. Although structurally similar, functionally they are quite distinct. Specific amino acid substitutions in α-lactalbumin account for the loss of the enzyme activity of lysozyme and the acquisition of the features necessary for its role in lactose synthesis. Evolutionary implications are as yet unclear but are being unraveled in many laboratories.  相似文献   

18.
An 8.4 kb Sau3AI DNA fragment containing the Streptomyces rimosus TM-55 -amylase gene (amy) was ligated to a vector pIJ702, named pCYL01, and cloned into amylase deficient mutant S. lividans M2 (amy ). Subcloning study showed that the amy gene was localized in 3.3 kbKpnI-PstI fragment. The molecular weight of the purified -amylases of S. lividans M2/pCYL01 and S. rimosus TM-55 were estimated to be 65.7 kDa. Different sizes of recombinant plasmids carrying the amy gene had been retransferred into the parental strain of S. rimosus TM-55. Among these S. rimosus transformants, TM-55/pCYL01, TM-55/pCYL12 and TM-55/pCYL36 showed amylase activity 1.36- to 2.05-fold at the seventh day (1.61 to 2.42 units vs 1.18 units), and oxytetracycline (OTC) production 2.00- to 2.50-fold at the ninth day (approximate 140 to 170 g ml–1 vs 72 g ml–1), higher than that of S. rimosus TM-55 alone, respectively. These results showed that industrial microorganisms could be improved by genetic and metabolic engineering.  相似文献   

19.
20.
To evaluate the allelic frequency and genetic diversity of α-thalassemia defects in Sicily, both epidemiological and patient-oriented studies were carried out. For the epidemiological study, phenotypic data were collected on more than 1000 Sicilian individuals. Among them, 427 were explored at the molecular level for nine α-thalassemic variants known to be common in the Mediterranean region. Our data reveal an allele frequency of 4.1% for α+-thalassemia matching that of β-thalassemia in this region. The presence of α°-thalassemia (––MEDI and ––CAL) was observed only in the group of referred patients. Newly acquired nucleotide sequence data on the deletional breakpoint of ––CAL allowed us to design a simple PCR-based procedure for exploring this allele. The data also provide additional information concerning the genetic mechanisms involved in such large deletions. Received: 8 August 1996 / Revised: 16 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号