首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VopF, the type III effector molecule, has been implicated in the pathogenesis of non-O1, non-O139 strains of Vibrio cholerae. It is a protein of 530 amino acids, comprises of one formin homology 1-like (FH1-like) domain and three WASP homology 2 (WH2) domains. Previous works have demonstrated that WH2 domains are crucial for VopF function as a modulator of cellular actin homeostasis. Furthermore, domain deletion analysis also suggests that VopF variant constituted with only WH2 domain 3 is more efficient in restricting the growth of budding yeast than its congeners containing either only domain 1 or domain 2. Interestingly, a good degree of sequence diversity is present within each WH2 domain of VopF. In order to ascertain the importance of different amino acids in each WH2 domain, a systemic alanine scanning mutagenesis was employed. Using a yeast model system, the alanine derivatives of each amino acid of WH2 domain 1 and 3 of VopF were examined for growth restricting activity. Taken together, our mutagenesis results reveal the identification of critical residues of WH2 domain 1 and 3 of VopF.  相似文献   

2.
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.  相似文献   

3.
Vibrio parahaemolyticus, a Gram-negative halophilic bacterium that causes acute gastroenteritis in humans, is characterized by two type III secretion systems (T3SS), namely T3SS1 and T3SS2. T3SS2 is indispensable for enterotoxicity but the effector(s) involved are unknown. Here, we identify VopV as a critical effector that is required to mediate V. parahaemolyticus T3SS2-dependent enterotoxicity. VopV was found to possess multiple F-actin-binding domains and the enterotoxicity caused by VopV correlated with its F-actin-binding activity. Furthermore, a T3SS2-related secretion system and a vopV homologous gene were also involved in the enterotoxicity of a non-O1/non-O139 V. cholerae strain. These results indicate that the F-actin-targeting effector VopV is involved in enterotoxic activity of T3SS2-possessing bacterial pathogens.  相似文献   

4.
The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tβ4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs–Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been “outsourced” to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.  相似文献   

5.
Formin proteins modulate both nucleation and elongation of actin filaments through processive movement of their dimeric formin homology 2 (FH2) domains with filament barbed ends. Mammals possess at least 15 formin genes. A subset of formins termed "diaphanous formins" are regulated by autoinhibition through interaction between an N-terminal diaphanous inhibitory domain (DID) and a C-terminal diaphanous autoregulatory domain (DAD). Here, we found several striking features for the mouse formin, INF2. First, INF2 interacted directly with actin through a region C-terminal to the FH2. This second interacting region sequesters actin monomers, an activity that is dependent on a WASP homology 2 (WH2) motif. Second, the combination of the FH2 and C-terminal regions of INF2 resulted in its curious ability to accelerate both polymerization and depolymerization of actin filaments. The mechanism of the depolymerization activity, which is novel for formin proteins, involves both the monomer binding ability of the WH2 and a potent severing activity that is dependent on covalent attachment of the FH2 to the C terminus. Phosphate inhibits both the depolymerization and severing activities of INF2, suggesting that phosphate release from actin subunits in the filament is a trigger for depolymerization. Third, INF2 contains an N-terminal DID, and the WH2 motif likely doubles as a DAD in an autoinhibitory interaction.  相似文献   

6.
Formin homology proteins are a highly conserved family of cytoskeletal remodeling proteins best known for their ability to induce the formation of long unbranched actin filaments. They accomplish this by nucleating the de novo polymerization of F-actin and also by acting as F-actin barbed end "leaky cappers" that allow filament elongation while antagonizing the function of capping proteins. More recently, it has been reported that the FH2 domains of FRL1 and mDia2 and the plant formin AFH1 are able to bind and bundle actin filaments via distinct mechanisms. We find that like FRL1, FRL2 and FRL3 are also able to bind and bundle actin filaments. In the case of FRL3, this activity is dependent upon a proximal DAD/WH2-like domain that is found C-terminal to the FH2 domain. In addition, we show that, like other Diaphanous-related formins, FRL3 activity is subject to autoregulation mediated by the interaction between its N-terminal DID and C-terminal DAD. In contrast, the DID and DAD of FRL2 also interact in vivo and in vitro but without inhibiting FRL2 activity. These data suggest that current models describing DID/DAD autoregulation via steric hindrance of FH2 activity must be revised. Finally, unlike other formins, we find that the FH2 and N-terminal dimerization domains of FRL2 and FRL3 are able to form hetero-oligomers.  相似文献   

7.
8.
Diaphanous-related formins (Drf) are activated by Rho GTP binding proteins and induce polymerization of unbranched actin filaments. They contain three formin homology domains. Evidence as to the effect of formins on actin polymerization were obtained using FH2/FH1 constructs of various length from different Drfs. Here we define the core FH2 domain as a proteolytically stable domain of approximately 338 residues. The monomeric FH2 domains from mDia1 and mDia3 inhibit polymerization of actin and can bind in a 1:1 complex with F-actin at micromolar concentrations. The X-ray structure analysis of the domain shows an elongated, crescent-shaped molecule consisting of three helical subdomains. The most highly conserved regions of the domain span a distance of 75 A and are both required for barbed-end inhibition. A construct containing an additional 72 residue linker has dramatically different properties: It oligomerizes and induces actin polymerization at subnanomolar concentration.  相似文献   

9.
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are diarrheagenic pathogens that colonize the gut mucosa via attaching-and-effacing lesion formation. EPEC and EHEC utilize a type III secretion system (T3SS) to translocate effector proteins that subvert host cell signalling to sustain colonization and multiplication. EspH, a T3SS effector that modulates actin dynamics, was implicated in the elongation of the EHEC actin pedestals. In this study we found that EspH is necessary for both efficient pedestal formation and pedestal elongation during EPEC infection. We report that EspH induces actin polymerization at the bacterial attachment sites independently of the Tir tyrosine residues Y474 and Y454, which are implicated in binding Nck and IRSp53/ITRKS respectively. Moreover, EspH promotes recruitment of neural Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex to the bacterial attachment site, in a mechanism involving the C-terminus of Tir and the WH1 domain of N-WASP. Dominant negative of WASP-interacting protein (WIP), which binds the N-WASP WH1 domain, diminished EspH-mediated actin polymerization. This study implicates WIP in EPEC-mediated actin polymerization and pedestal elongation and represents the first instance whereby N-WASP is efficiently recruited to the EPEC attachment sites independently of the Tir:Nck and Tir:IRTKS/IRSp53 pathways. Our study reveals the intricacies of Tir and EspH-mediated actin signalling pathways that comprise of distinct, convergent and synergistic signalling cascades.  相似文献   

10.
Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants.  相似文献   

11.
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.  相似文献   

12.
13.
AM‐19226 is a pathogenic, non‐O1/non‐O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co‐culturing the Caco2‐BBE human intestinal epithelial cell line with AM‐19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2‐BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell‐cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM‐19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.  相似文献   

14.
Burkholderia pseudomallei is a Gram-negative facultative intracellular pathogen that enters and escapes from eukaryotic cells using the power of actin polymerization. We have identified a bacterial protein (BimA) that is required for the ability of B. pseudomallei to induce the formation of actin tails. BimA contains proline-rich motifs and WH2-like domains and shares limited homology at the C-terminus with the Yersinia autosecreted adhesin YadA. BimA is located at the pole of the bacterial cell at which actin polymerization occurs and mutation of bimA abolished actin-based motility of the pathogen in J774.2 cells. Transient expression of BimA in HeLa cells resulted in F-actin clustering reminiscent of that seen on WASP overexpression. Antibody-mediated clustering of a CD32 chimera in which the cytoplasmic domain was replaced with BimA resulted in localization of the chimera to the tips of F-actin enriched membrane protrusions. We report that purified truncated BimA protein binds monomeric actin in a concentration-dependent manner in cosedimentation assays and that BimA stimulates actin polymerization in vitro in a manner independent of the cellular Arp2/3 complex.  相似文献   

15.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

16.
17.
INF2 is an unusual formin protein in that it accelerates both actin polymerization and depolymerization, the latter through an actin filament-severing activity. Similar to other formins, INF2 possesses a dimeric formin homology 2 (FH2) domain that binds filament barbed ends and is critical for polymerization and depolymerization activities. In addition, INF2 binds actin monomers through its diaphanous autoregulatory domain (DAD) that resembles a Wiskott-Aldrich syndrome protein homology 2 (WH2) sequence C-terminal to the FH2 that participates in both polymerization and depolymerization. INF2-DAD is also predicted to participate in an autoinhibitory interaction with the N-terminal diaphanous inhibitory domain (DID). In this work, we show that actin monomer binding to the DAD of INF2 competes with the DID/DAD interaction, thereby activating actin polymerization. INF2 is autoinhibited in cells because mutation of a key DID residue results in constitutive INF2 activity. In contrast, purified full-length INF2 is constitutively active in biochemical actin polymerization assays containing only INF2 and actin monomers. Addition of proteins that compete with INF2-DAD for actin binding (profilin or the WH2 from Wiskott-Aldrich syndrome protein) decrease full-length INF2 activity while not significantly decreasing activity of an INF2 construct lacking the DID sequence. Profilin-mediated INF2 inhibition is relieved by an anti-N-terminal antibody for INF2 that blocks the DID/DAD interaction. These results suggest that free actin monomers can serve as INF2 activators by competing with the DID/DAD interaction. We also find that, in contrast to past results, the DID-containing N terminus of INF2 does not directly bind the Rho GTPase Cdc42.  相似文献   

18.
Cells contain multiple formin isoforms that drive the assembly of profilin-actin for diverse processes. Given that many organisms also contain several profilin isoforms, specific formin/profilin pairs might be matched to optimally stimulate actin polymerization. We utilized a combination of bulk actin polymerization and single filament total internal reflection fluorescence microscopy assays to measure the effect of different profilin isoforms on the actin assembly properties of the cytokinesis formins from fission yeast (Cdc12p) and the nematode worm (CYK-1). We discovered that Cdc12p only effectively utilizes the single fission yeast profilin isoform SpPRF. Conversely, CYK-1 prefers the essential worm cytokinesis profilin CePFN-1 to the two non-essential worm profilin isoforms (SpPRF = CePFN-1 > CePFN-2 > CePFN-3). Chimeras containing the profilin-binding formin homology 1 (FH1) domain from one formin and the barbed-end associated FH2 domain from the other formin, revealed that both the FH1 and FH2 domains help confer profilin isoform specialization. Although the Cdc12p and CYK-1 FH1 domains cannot differentiate between profilin isoforms in the absence of actin, formin FH1 domains appear to preferentially select specific isoforms of profilin-actin. Surprisingly, analysis of profilin point mutants revealed that differences in highly conserved residues in both the poly-L-proline and actin binding regions of profilin do not explain their differential utilization by formin. Therefore, rapid formin-mediated elongation of profilin-actin depends upon favorable interactions of profilin-actin with the FH1 domain as well as the barbed-end associated FH2 domain. Specific formin FH1FH2 domains are tailored to optimally utilize actin bound to particular profilin isoforms.  相似文献   

19.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   

20.
Apicomplexan parasites, such as the malaria-causing Plasmodium species, utilize a unique way of locomotion and host cell invasion. This substrate-dependent gliding motility requires rapid cycling of actin between the monomeric state and very short, unbranched filaments. Despite the crucial role of actin polymerization for the survival of the malaria parasite, the majority of Plasmodium cellular actin is present in the monomeric form. Plasmodium lacks most of the canonical actin nucleators, and formins are essentially the only candidates for this function in all Apicomplexa. The malaria parasite has two formins, containing conserved formin homology (FH) 2 and rudimentary FH1 domains. Here, we show that Plasmodium falciparum formin 1 associates with and nucleates both mammalian and Plasmodium actin filaments. Although Plasmodium profilin alone sequesters actin monomers, thus inhibiting polymerization, its monomer-sequestering activity does not compete with the nucleating activity of formin 1 at an equimolar profilin-actin ratio. We have determined solution structures of P. falciparum formin 1 FH2 domain both in the presence and absence of the lasso segment and the FH1 domain, and show that the lasso is required for the assembly of functional dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号