首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yoon M  Spear PG 《Journal of virology》2002,76(14):7203-7208
Nectin-1, a cell adhesion molecule belonging to the immunoglobulin superfamily, can bind to virion glycoprotein D (gD) to mediate entry of herpes simplex viruses (HSV) and pseudorabies virus (PRV). Nectin-1 colocalizes with E-cadherin at adherens junctions in epithelial cells. The disruption of cell junctions can result in the redistribution of nectin-1. To determine whether disruption of junctions by calcium depletion influenced the susceptibility of epithelial cells to viral entry, Madin-Darby canine kidney cells expressing endogenous nectin-1 or transfected human nectin-1 were tested for the ability to bind soluble forms of viral gD and to be infected by HSV and PRV, before and after calcium depletion. Confocal microscopy revealed that binding of HSV and PRV gD was localized to adherens junctions in cells maintained in normal medium but was distributed, along with nectin-1, over the entire cell surface after calcium depletion. Both the binding of gD and the fraction of cells that could be infected by HSV-1 and PRV were enhanced by calcium depletion. Taken together, these results provide evidence that nectin-1 confined to adherens junctions in epithelial cells is not very accessible to virus, whereas dissociation of cell junctions releases nectin-1 to serve more efficiently as an entry receptor.  相似文献   

2.
3.
E-cadherin mediates the formation of adherens junctions between epithelial cells. It serves as a receptor for Listeria monocytogenes, a bacterial pathogen that enters epithelial cells. The L. monocytogenes surface protein, InlA, interacts with the extracellular domain of E-cadherin. In adherens junctions, this ectodomain is involved in homophilic interactions whereas the cytoplasmic domain binds beta-catenin, which then recruits alpha-catenin. alpha-catenin binds to actin directly, or indirectly, thus linking E-cadherin to the actin cytoskeleton. Entry of L. monocytogenes into cells and adherens junction formation are dynamic events that involve actin and membrane rearrangements. To understand these processes better, we searched for new ligands of alpha-catenin. Using a two-hybrid screen, we identified a new partner of alpha-catenin: ARHGAP10. This protein colocalized with alpha-catenin at cell-cell junctions and was recruited at L. monocytogenes entry sites. In ARHGAP10-knockdown cells, L. monocytogenes entry and alpha-catenin recruitment at cell-cell contacts were impaired. The GAP domain of ARHGAP10 has GAP activity for RhoA and Cdc42. Its overexpression disrupted actin cables, enhanced alpha-catenin and cortical actin levels at cell-cell junctions and inhibited L. monocytogenes entry. Altogether, our results show that ARHGAP10 is a new component of cell-cell junctions that controls alpha-catenin recruitment and has a key role during L. monocytogenes uptake.  相似文献   

4.
Tight junctional inhibition of entry of Toxoplasma gondii into MDCK cells   总被引:1,自引:0,他引:1  
Various conditions of cultures were performed to investigate the role of tight junctions formed between adjacent MDCK cells on the entry of Toxoplasma. When MDCK cells were cocultured with excess number of Toxoplasma at the seeding density of 1 x 10(5), 3 x 10(5), and 5 x 10(5) cells/ml for 4 days, the number of intracellular parasites decreased rapidly as the host cells reached saturation density, i.e., the formation of tight junctions. When the concentration of calcium in the media (1.8 mM in general) was shifted to 5 microM that resulted in the elimination of tight junction, the penetration of Toxoplasma increased about 2-fold (p less than 0.05) in the saturated culture, while that of non-saturated culture decreased by half. Trypsin-EDTA which was treated to conquer the tight junctions of saturated culture favored the entry of Toxoplasma about 2.5-fold (p less than 0.05) compared to the non-treated, while that of non-saturated culture decreased to about one fifth. It was suggested that the tight junctions of epithelial cells play a role as a barrier for the entry of Toxoplasma and Toxoplasma penetrate into host cells through membrane structure-specific, i.e., certain kind of receptors present on the basolateral rather than apical surface of MDCK cells.  相似文献   

5.
Several viruses can use, as entry receptors, cell adhesion molecules that localize to junctional complexes of epithelial cells and other cell types. A recent publication in Cell describes how adenovirus can disrupt cell junctions, thereby effecting its release from basal surfaces of an infected epithelium to the apical or external environment.  相似文献   

6.
Crimean-Congo hemorrhagic fever virus (CCHFV) is an etiological agent of a disease with mortality rates in patients averaging 30%. The disease is characterized by fever, myalgia, and hemorrhage. Mechanisms underlying the hemorrhage have to our knowledge not been elucidated for CCHFV. Possibly, a direct or indirect viral effect on tight junctions (TJ) could cause the hemorrhage observed in patients, as TJ play a crucial role in vascular homeostasis and can cause leakage upon deregulation. Moreover, there is no knowledge regarding the site of entry and release of CCHFV in polarized epithelial cells. Such cells represent a barrier to virus dissemination within the host, and as a site of viral entry and release, they could play a key role in further spread. For the first time, we have shown preferential basolateral entry of CCHFV in Madin-Darby canine kidney 1 (MDCK-1) epithelial cells. Furthermore, we demonstrated basolateral release of CCHFV in polarized epithelial cells. Interestingly, by measuring transepithelial electrical resistance, we found no effect of CCHFV replication on the function of TJ in this study. Neither did we observe any difference in the localization of the TJ proteins ZO-1 and occludin in CCHFV-infected cells compared to mock-infected cells.  相似文献   

7.
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.  相似文献   

8.
Herpes simplex virus (HSV) expresses a number of membrane glycoproteins, including gB, gD, and gH/gL, that function in both entry of virus particles and movement of virus from an infected cell to an uninfected cell (cell-to-cell spread). However, a complex of HSV glycoproteins gE and gI (gE/gI) is required for efficient cell-to-cell spread, especially between cells that form extensive cell junctions, yet it is not necessary for entry of extracellular virions. We previously showed that gE/gI has the capacity to localize specifically to cell junctions; the glycoprotein complex was found at lateral surfaces of cells in contact with other cells but not at those lateral surfaces not forming junctions or at apical surfaces. By virtue of these properties, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. Here, we show that the cytoplasmic domain of gE is important for the proper delivery of gE/gI to lateral surfaces of cells. Without this domain, gE/gI is found on the apical surface of epithelial cells, and more uniformly in the cytoplasm, although incorporation into the virion envelope is unaffected. However, even without proper trafficking signals, a substantial fraction of gE/gI retained the capacity to accumulate at cell junctions. Therefore, the extracellular domain of gE can mediate accumulation of gE/gI at cell junctions, if the glycoprotein can be delivered there, probably through interactions with ligands on the opposing cell. The role of phosphorylation of the cytoplasmic domain of gE was also studied. A second mutant HSV type 1 was constructed in which three serine residues that form a casein kinase II phosphorylation site were changed to alanine residues, reducing phosphorylation by 70 to 80%. This mutation did not affect accumulation at cell junctions or cell-to-cell spread.  相似文献   

9.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

10.
The interaction between echovirus 11 strain 207 (EV11-207) and decay-accelerating factor (DAF or CD55) at the apical surface of polarized Caco-2 cells results in rapid transport of the virus to tight junctions and in its subsequent uptake. A virus mutant (EV11-207R) which differs at 6 amino acids and whose affinity for DAF is apparently significantly lower remains at the apical surface, from where its uptake occurs. Binding of EV11-207 to DAF and its transport to tight junctions result in a loss of function of the junctions. In contrast, the mutant virus EV11-207R is not transferred to tight junctions, nor does it impair the integrity of these junctions. Cholesterol depletion from the apical membrane leads to DAF aggregation and, presumably, internalization and inhibits infection by EV11-207. However, infection by EV11-207R is significantly less sensitive to cholesterol depletion than infection by EV11-207, confirming the DAF requirement for EV11-207, but not EV11-207R, to infect cells. These data strongly indicate that in the case of infection of polarized epithelial cells by echovirus 11, DAF binding appears be a key determinant in the choice of entry pathway, at least in cell culture.  相似文献   

11.
Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells'' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host.  相似文献   

12.
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.  相似文献   

13.
Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells.  相似文献   

14.
Gap junctions between insect oocytes and follicular epithelial cells allow transit of elongate Ca(2+)-binding proteins Calmodulin (CaM, 17kDa) and Troponin-C (Trop-C, 18kDa), but not multi-branched dextran (10kDa) nor the Ca(2+)-binding protein Osteocalcin (Osteo, 6kDa). By microinjection of fluorescently labeled versions of each of these molecules we were able to obtain visual evidence that, despite their lesser molecular weight, molecules with greater cross-sections were unable to transit these gap junctions, while heavier but elongate molecules could. While CaM had previously been shown to pass through gap junctions from oocytes to their surrounding epithelial cells, the ability of CaM and Trop-C to transit the gap junctions between adjacent epithelial cells had not been demonstrated. Evidence shown here demonstrates that the homologous gap junctions among epithelial cells, like the heterologous gap junctions between epithelial cells and the oocyte they surround, allow transit of elongate molecules up to at least 18kDa. Furthermore, the evidence for four different molecules of differing molecular weights and configurations supports the hypothesis that it is molecular configuration, not chemical activity, that primarily determines the observed permeability of gap junctions to molecules 5-6 times larger than the molecular weight limit previously acknowledged.  相似文献   

15.
Heregulin-beta1 (HRG) promotes motility, scattering, and invasiveness of breast cancer cells. Tiam1, a newly identified guanine nucleotide exchange factor, has been shown to inhibit or promote cell migration in a cell type-dependent manner. In this study, we identified Tiam1 as a target of HRG signaling. HRG stimulation of breast cancer epithelial cells induced the phosphorylation and redistribution of Tiam1 to the membrane ruffles and the loosening of intercellular junctions. In addition, HRG-mediated scattering of breast epithelial cells was accompanied by stimulation of tyrosine phosphorylation and redistribution of beta-catenin from the cell junctions to the cytosol and, finally, entry into the nucleus. Decompaction of breast cancer epithelial cells by HRG was accompanied by a transient physical association of the tyrosine-phosphorylated beta-catenin with the activated human epidermal growth factor receptor 2 and subsequent nuclear translocation of beta-catenin, as well as beta-catenin-dependent transactivation of T-cell factor.lymphoid enhancer factor-1. All of these HRG-induced phenotypic changes were regulated in a phosphatidylinositol-3 kinase-sensitive manner. HRG-induced cellular ruffles, loss of intercellular adhesiveness, and increased cell migration could be mimicked by overexpression of a fully functional Tiam1 construct. Furthermore, ectopic expression of Tiam1 or of an active beta-catenin mutant led to potentiation of the beta-catenin-dependent T-cell factor.lymphoid enhancer factor-1 transactivation and invasiveness of HRG-treated cells. We also found preliminary evidence suggesting a close correlation between the status of Tiam1 expression and invasiveness of human breast tumor cells with the degree of progression of breast tumors. Together, these findings suggest that HRG regulate Tiam1 activation and lymphoid enhancer factor/beta-catenin nuclear signaling via phosphatidylinositol-3 kinase in breast cancer cells.  相似文献   

16.
At the initial stage of cell-cell contact of epithelial cells, primordial spot-like junctions are formed at the tips of thin cellular protrusions radiating from adjacent cells, where E-cadherin and ZO-1 are precisely coconcentrated (Yonemura et al., 1995, J. Cell Sci. 108:127-142). In fully polarized epithelial cells, E-cadherin and ZO-1 are completely sorted into belt-like adherens junctions (AJ) and tight junctions (TJ), respectively. Here we examined the behavior of occludin, an integral membrane protein consisting of TJ, during the establishment of epithelial cell polarity. Using confocal immunofluorescence microscopy, we quantitatively compared the spatial relationship of occludin/ZO-1 with that of E-cadherin/ZO-1 during epithelial cellular polarization by replating or wounding cultured mouse epithelial cells (MTD1-A). At the initial stage of cell-cell contact, E-cadherin and ZO-1 appeared to be simultaneously recruited to the primordial form of spot-like junctions at the tips of cellular processes which showed no concentration of occludin. Then, as cellular polarization proceeded, occludin was gradually accumulated at the ZO-1-positive spot-like junctions to form belt-like TJ, and in a complementary manner E-cadherin was sorted out from the ZO-1-positive spot-like junctions to form belt-like AJ. The molecular mechanism of TJ/AJ formation during epithelial cellular polarization is discussed with special reference to the roles of ZO-1.  相似文献   

17.
Trypanosoma cruzi invade a mammalian epithelial cell in a polarized manner   总被引:10,自引:0,他引:10  
We have determined that parasite entry into host cells can be influenced by cell polarity using a DNA probe to quantitate the infection of cultured Madin-Darby canine kidney (MDCK) epithelial cells by Trypanosoma cruzi, the agent of Chagas' disease. Confluent MDCK cells are polarized, with their plasma membrane separated by tight junctions into two domains, apical and basolateral. We show that T. cruzi forms corresponding to the insect infective stages (metacyclics) and the vertebrate blood stages (trypomastigotes) enter confluent MDCK cells preferentially through their basolateral domains. Sparsely plated MDCK cells are less polarized and are better infected than confluent cells. Scanning electron microscopy showed that 92% +/- 4% of the parasites entered at the edges of cells.  相似文献   

18.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

19.
Lens epithelial cells communicate with two different cell types. They communicate with other epithelial cells via gap junctions on their lateral membranes, and with fiber cells via junctions on their apices. We tested independently these two routes of cell-cell communication to determine if treatment with a 90% CO2-equilibrated medium caused a decrease in junctional permeability; the transfer of fluorescent dye was used as the assay. We found that the high-CO2 treatment blocked intraepithelial dye transfer but not fiber-to-epithelium dye transfer. The lens epithelial cell thus forms at least two physiologically distinct classes of gap junctions.  相似文献   

20.
Na,K-ATPase is a key enzyme that regulates a variety of transport functions in epithelial cells. In this study, we demonstrate a role for Na,K-ATPase in the formation of tight junctions, desmosomes, and epithelial polarity with the use of the calcium switch model in Madin-Darby canine kidney cells. Inhibition of Na,K-ATPase either by ouabain or potassium depletion prevented the formation of tight junctions and desmosomes and the cells remained nonpolarized. The formation of bundled stress fibers that appeared transiently in control cells was largely inhibited in ouabain-treated or potassium-depleted cells. Failure to form stress fibers correlated with a large reduction of RhoA GTPase activity in Na,K-ATPase-inhibited cells. In cells overexpressing wild-type RhoA GTPase, Na,K-ATPase inhibition did not affect the formation of stress fibers, tight junctions, or desmosomes, and epithelial polarity developed normally, suggesting that RhoA GTPase is an essential component downstream of Na,K-ATPase-mediated regulation of these junctions. The effects of Na,K-ATPase inhibition were mimicked by treatment with the sodium ionophore gramicidin and were correlated with the increased intracellular sodium levels. Furthermore, ouabain treatment under sodium-free condition did not affect the formation of junctions and epithelial polarity, suggesting that the intracellular Na(+) homeostasis plays a crucial role in generation of the polarized phenotype of epithelial cells. These results thus demonstrate that the Na,K-ATPase activity plays an important role in regulating both the structure and function of polarized epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号