首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The host-pathogen interaction: new themes from dendritic cell biology   总被引:12,自引:0,他引:12  
Rescigno M  Borrow P 《Cell》2001,106(3):267-270
  相似文献   

2.
The cholesterol-dependent cytolysins are pore-forming toxins. Pneumolysin is the cytolysin produced by Streptococcus pneumoniae and is a key virulence factor. The protein contains 471 amino acids and four structural domains. Binding to cholesterol is followed by oligomerization and membrane pore formation. Pneumolysin also activates the classical pathway of complement. Mutational analysis of the toxin and knowledge of sequence variation in outbreak strains suggests that additional activities of biologic importance exist. Pneumolysin activates a large number of genes, some by epigenetic modification, in eukaryotic cells and multiple signal transduction pathways. Cytolytic effects contribute to lung injury and neuronal damage while pro-inflammatory effects compound tissue damage. Nevertheless pneumolysin is a focal point of the immune response to pneumococci. Toll-like receptor 4-mediated recognition, osmosensing and T-cell responses to pneumolysin have been identified. In some animal models mutants that lack pneumolysin are associated with impaired bacterial clearance. Pneumolysin, which itself may induce apoptosis in neurones and other cells can activate host-mediated apoptosis in macrophages enhancing clearance. Disease pathogenesis, which has traditionally focused on the harmful effects of the toxin, increasingly recognises that a precarious balance between limited host responses to pneumolysin and either excessive immune responses or toxin-mediated subversion of host immunity exists.  相似文献   

3.
4.
Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction.  相似文献   

5.
Antibiotic production from the ground up   总被引:1,自引:0,他引:1  
  相似文献   

6.
The potential for local adaptation between pathogens and their hosts has generated strong theoretical and empirical interest with evidence both for and against local adaptation reported for a range of systems. We use the Linum marginale-Melampsora lini plant-pathogen system and a hierarchical spatial structure to investigate patterns of local adaptation within a metapopulation characterised by epidemic dynamics and frequent extinction of pathogen populations. Based on large sample sizes and comprehensive cross-inoculation trials, our analyses demonstrate strong local adaptation by Melampsora to its host populations, with this effect being greatest at regional scales, as predicted from the broader spatial scales at which M. lini disperses relative to L. marginale. However, there was no consistent trend for more distant pathogen populations to perform more poorly. Our results further show how the coevolutionary interaction between hosts and pathogens can be influenced by local structure such that resistant hosts select for generally virulent pathogens, while susceptible hosts select for more avirulent pathogens. Empirically, local adaptation has generally been tested in two contrasting ways: (1) pathogen performance on sympatric versus allopatric hosts; and (2) sympatric versus allopatric pathogens on a given host population. In situations where no host population is more resistant or susceptible than others when averaged across pathogen populations (and likewise, no pathogen population is more virulent or avirulent than others), results from these tests should generally be congruent. We argue that this is unlikely to be the case in the metapopulation situations that predominate in natural host-pathogen interactions, thus requiring tests that control simultaneously for variation in plant and pathogen populations.  相似文献   

7.
Hartlova A  Krocova Z  Cerveny L  Stulik J 《Proteomics》2011,11(15):3212-3220
The host-pathogen interaction represents a complex and dynamic biological system. The outcome of this interaction is dependent on the microbial pathogen properties to establish infection and the ability of the host to control infection. Although bacterial pathogens have evolved a variety of strategies to subvert host defense functions, several general mechanisms have been shown to be shared among these pathogens. As a result, host effectors that are critical for pathogen entry, survival and replication inside the host cells have become a new paradigm for antimicrobial targeting. This review focuses on the potential utility of a proteomics approach in defining the host-pathogen interaction from the host's perspective.  相似文献   

8.
Molecular basis of host-pathogen interaction in septic shock   总被引:11,自引:0,他引:11  
Specific mechanisms of recognition of microbial products have been developed by host cells. Among these mechanisms, recognition of lipopolysaccharide of Gram-negative bacteria by CD14, a glycoprotein expressed at the surface of myelomonocytic cells, plays a major role. There is increasing evidence that CD14 also serves as a receptor for other microbial products including peptidoglycan of Gram-positive bacteria. A common theme is that CD14 represents a key molecule in innate immunity. Recognition of microbial products by host cells leads to cell activation and production of a large array of mediators that are necessary for the development of controlled inflammatory processes. When the activation process is out of control, such as in septic shock, these mediators can be detrimental to the host.  相似文献   

9.
Pathogens can pose challenges to plant growth and development at various stages of their life cycle. Two interconnected defense strategies prevent the growth of pathogens in plants, i.e., molecular patterns triggered immunity (PTI) and pathogenic effector-triggered immunity (ETI) that often provides resistance when PTI no longer functions as a result of pathogenic effectors. Plants may trigger an ETI defense response by directly or indirectly detecting pathogen effectors via their resistance proteins. A typical resistance protein is a nucleotide-binding receptor with leucine-rich sequences (NLRs) that undergo structural changes as they recognize their effectors and form associations with other NLRs. As a result of dimerization or oligomerization, downstream components activate “helper” NLRs, resulting in a response to ETI. It was thought that ETI is highly dependent on PTI. However, recent studies have found that ETI and PTI have symbiotic crosstalk, and both work together to create a robust system of plant defense. In this article, we have summarized the recent advances in understanding the plant's early immune response, its components, and how they cooperate in innate defense mechanisms. Moreover, we have provided the current perspective on engineering strategies for crop protection based on up-to-date knowledge.  相似文献   

10.
11.
12.
13.
14.
Coevolutionary outcomes between interacting species are predicted to vary across landscapes, as environmental conditions, gene flow, and the strength of selection vary among populations. Using a combination of molecular, experimental, and field approaches, we describe how broad-scale patterns of environmental heterogeneity, genetic divergence, and regional adaptation have the potential to influence coevolutionary processes in the Linum marginale-Melampsora lini plant-pathogen interaction. We show that two genetically and geographically divergent pathogen lineages dominate interactions with the host across Australia, and demonstrate a hybrid origin for one of the lineages. We further demonstrate that the geographic divergence of the two lineages of M. lini in Australia is related to variation among lineages in virulence, life-history characteristics, and response to environmental conditions. When correlated with data describing regional patterns of variation in host resistance diversity and mating system these observations highlight the potential for gene flow and geographic selection mosaics to generate and maintain coevolutionary diversification in long-standing host-pathogen interactions.  相似文献   

15.
16.
By replacing a native promoter with lac and tac promoters, the gene encoding an ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 was overexpressed in Escherichia coli. The EFE protein expressed by a multicopy plasmid accounted for more than 30% of the total cellular protein, resulting in ethylene-forming activities higher than 10 μl of ethylene (mg cell)−1h−1 in recombinant E. coli cells. However, most of the EFE protein accumulated as inactive inclusion bodies particularly at elevated temperatures (>30°C). We present an efficient procedure for reconstituting an active enzyme from inclusion bodies by solubilization with 8 M urea and dialysis. The reconstituted EFE has specific activity identical to that of the native enzyme from P. syringae, suggesting that the EFE protein has an intrinsic folding capability in vitro.  相似文献   

17.
18.
Metarhizium anisopliae is an entomopathogenic fungus well characterized for the biocontrol of a wide range of plagues. Its pathogenicity depends on the secretion of hydrolytic enzymes that degrade the host cuticle. To identify proteins involved in the infection process and in host specify, immunoproteomic analysis was performed using antiserum produced against crude extract of M. anisopliae cultured in the presence of Rhipicephalus (Boophilus) microplus and Dysdercus peruvianus cuticles. Spots detected using antisera produced against M. anisopliae cultured in cuticles and spore surface proteins, but not with antiserum against M. anisopliae cultured in glucose, were identified so as to give insights about the infection process. An MS/MS allowed the identification of proteases, like elastase, trypsin, chymotrypsin, carboxypeptidase and subtilisin (Pr1A, Pr1I and PR1J), chitinases, DNase I and proline-rich protein. Chymotrypsin and Pr1I were inferred as host specific, being recognized in D. peruvianus infection only. This research represents an important contribution to the understanding the adaptation mechanisms of M. anisopliae to different hosts.  相似文献   

19.
Lysosomal neuraminidase from human placenta has been obtained in its active form by association of an inactive neuraminidase polypeptide with beta-galactosidase and the protective protein. Using a specific antiserum, we have now identified a 66-kDa protein as the inactive neuraminidase polypeptide. It is specifically recognized on immunoblots only in its nonreduced state, and it coprecipitates with neuraminidase activity. The 66-kDa polypeptide is substantially glycosylated (38-kDa protein core with 7-14 N-linked oligosaccharide chains), a feature characteristic of lysosomal integral membrane proteins. Specific removal of the 66-kDa neuraminidase polypeptide from glycoprotein preparations prevents the generation of neuraminidase activity. Removal of beta-galactosidase or destruction of the protective protein also hinders the formation of active neuraminidase. Reconstitution of neuraminidase activity is observed after mixing glycoprotein preparations, depleted in different components of the beta-galactosidase-neuraminidase-protective protein complex, indicating that all three components of the complex are required for neuraminidase activity. Association of the neuraminidase polypeptide and the protective protein generates unstable neuraminidase activity, whereas association with beta-galactosidase is required for stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号