首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We attempted to measure diaphragmatic tension by measuring changes in diaphragmatic intramuscular pressure (Pim) in the costal and crural parts of the diaphragm in 10 supine anesthetized dogs with Gaeltec 12 CT minitransducers. During phrenic nerve stimulation or direct stimulation of the costal and crural parts of the diaphragm in an animal with the chest and abdomen open, Pim invariably increased and a linear relationship between Pim and the force exerted on the central tendon was found (r greater than or equal to 0.93). During quiet inspiration Pim in general decreased in the costal part (-3.9 +/- 3.3 cmH2O), whereas it either increased or slightly decreased in the crural part (+3.3 +/- 9.4 cmH2O, P less than 0.05). Similar differences were obtained during loaded and occluded inspiration. After bilateral phrenicotomy Pim invariably decreased during inspiration in both parts (costal -4.3 +/- 6.4 cmH2O, crural -3.1 +/- 0.6 cmH2O). Contrary to the expected changes in tension in the muscle, but in conformity with the pressure applied to the muscle, Pim invariably increased during passive inflation from functional residual capacity to total lung capacity (costal +30 +/- 23 cmH2O, crural +18 +/- 18 cmH2O). Similarly, during passive deflation from functional residual capacity to residual volume, Pim invariably decreased (costal -12 +/- 19 cmH2O, crural -12 +/- 14 cmH2O). In two experiments similar observations were made with saline-filled catheters. We conclude that although Pim increases during contraction as in other muscles, Pim during respiratory maneuvers is primarily determined by the pleural and abdominal pressures applied to the muscle rather than by the tension developed by it.  相似文献   

2.
In vivo length-force relationship of canine diaphragm   总被引:4,自引:0,他引:4  
Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.  相似文献   

3.
We examined the relationship between changes in abdominal cross-sectional area, measured by respiratory inductive plethysmography, and changes in length in the costal and crural parts of the diaphragm, measured by sonomicrometry, in nine supine, anesthetized dogs. During passive inflation, both parts of the diaphragm shortened and abdominal cross-sectional area increased. During passive deflation, both parts of the diaphragm lengthened and abdominal cross-sectional area decreased. We subsequently used the relationship between costal and crural diaphragmatic length, respectively, and abdominal cross-sectional area during passive inflation-deflation to predict the length changes in the costal and crural diaphragm during quiet breathing before and after bilateral phrenicotomy. In the intact animal the inspiratory shortening in the crural diaphragm was almost invariably greater than predicted from the relationship during passive inflation. During inspiration after phrenicotomy the crural diaphragm invariably lengthened, whereas the costal diaphragm often shortened. In general there was a good correlation between the measured and predicted length change for the crural diaphragm (r = 0.72 before and 0.79 after phrenicotomy) and a poor one for the costal diaphragm (r = 0.05 before and 0.19 after phrenicotomy).  相似文献   

4.
We studied rib cage distortability and reexamined the mechanical action of the diaphragm and the rib cage muscles in six supine anesthetized dogs by measuring changes in upper rib cage cross-sectional area (Aurc) and changes in lower rib cage cross-sectional area (Alrc) and the respective pressures acting on them. During quiet breathing in the intact animal the rib cage behaved as a unit (Aurc: 14.6 +/- 7.9 vs. Alrc: 15.1 +/- 9.6%), whereas considerable distortions of the rib cage occurred during breathing after bilateral phrenicotomy (Aurc: 21.0 +/- 5.1 vs. Alrc: 7.0 +/- 4.8%). These distortions were even more pronounced during phrenic nerve stimulation and separate stimulation of the costal and crural parts of the diaphragm (e.g., phrenic nerve stimulation; Aurc: -7.1 +/- 5.1 vs. Alrc: 6.9 +/- 3.5%). During the latter maneuvers the upper rib cage deflated along the relationship between upper rib cage dimensions and pleural pressure obtained during passive deflation, whereas the lower rib cage inflated close to the relationship between lower rib cage dimensions and abdominal pressure obtained during passive inflation. The latter relationship is expected to differ between costal and crural stimulation, since costal action has both an appositional and insertional component and crural action only has an appositional component. The difference between costal and crural stimulation, however, was relatively small, and the slopes were only slightly steeper for the costal than for the crural stimulation (2.9 +/- 1.2 vs. 2.2 +/- 1.0%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have tested the hypothesis that the diaphragmatic head-to-head arterial anastomosis system should maintain adequate diaphragmatic function even during occlusion of some of its arteries. In six anesthetized open-chest dogs, left phrenic vein blood flow (Qphv) was measured by pulsed Doppler flowmetry. Contractility was measured by sonomicrometry in the left costal and crural diaphragm. The diaphragm was paced for 15 min by continuous bilateral supramaximal phrenic nerve stimulation. In five separate runs the following arteries were occluded at minute 5: 1) left phrenic artery, 2) internal mammary artery (IMA), 3) left phrenic artery and IMA, 4) descending aorta, and 5) descending aorta and IMA. Occlusion was then released at minute 10 of the run. In runs 1-3 there were no changes in contractility in costal or crural diaphragm and no changes in Qphv. However, in runs 4 and 5, Qphv decreased to 55.2 +/- 7.4 and 24.0 +/- 6.5% of control values, respectively. In run 4, percent maximum shortening from functional residual capacity (%LFRC) of the crural diaphragm decreased by 39.1%, while %LFRC of the costal diaphragm increased by 41.4% and abdominal pressure decreased by 47.0%. In run 5, abdominal pressure decreased by 53.5% and %LFRC of the crural and costal diaphragm decreased by 45.5 and 5.8%, respectively. Also relative postocclusion hyperemia was greater in run 5 (64.8%) than in run 4 (40.2%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Regional distribution of blood flow within the diaphragm   总被引:2,自引:0,他引:2  
We investigated the regional distribution of blood flow (Q) within the costal and crural portions of the diaphragm in a total of eight anesthetized supine mongrel dogs. Q was measured with 15-microns microspheres, radiolabeled with three different isotopes, injected into the left ventricle during spontaneous breathing (SB), inspiratory resistive loading (IR), and mechanical ventilation after paralysis (P). At necropsy, the costal and crural portions of each hemidiaphragm were arbitrarily subdivided along a sagittal plane into five to seven and three sections, respectively. During P, there was a dorsoventral Q gradient within the costal part of the diaphragm. During SB there was a fourfold increase in the gradient of Q. Furthermore, during IR, in which mouth pressures of -16 +/- 4 cmH2O were generated, there was a further increase in the gradient of Q. During both SB and IR, Q to the most ventral portion of the costal diaphragm was 26 +/- 6% less than the peak value. In two dogs, studied prone and supine, there was no difference in the Q gradients between the two postures. Over the dorsal 80% of the costal diaphragm there was also a dorsoventral gradient of muscle thickness, such that the most dorsal part was 54 +/- 2% (n = 5) that of the ventral portion. In contrast, there was no consistent gradient of Q or muscle thickness within the crural diaphragm. Our results demonstrate a topographical gravity-independent distribution of Q in the costal, but not the crural, diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Functional characteristics of canine costal and crural diaphragm   总被引:1,自引:0,他引:1  
We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.  相似文献   

8.
Respiratory muscle length was measured with sonomicrometry to determine the relation between inspiratory flow and velocity of shortening of the external intercostal and diaphragm. Electromyographic (EMG) activity and tidal shortening of the costal and crural segments of the diaphragm and of the external intercostal were recorded during hyperoxic CO2 rebreathing in 12 anesthetized dogs. We observed a linear increase of EMG activity and peak tidal shortening of costal and crural diaphragm with alveolar CO2 partial pressure. For the external intercostal, no consistent pattern was found either in EMG activity or in tidal shortening. Mean inspiratory flow was linearly related to mean velocity of shortening of costal and crural diaphragm, with no difference between the two segments. Considerable shortening occurred in costal and crural diaphragm during inspiratory efforts against occlusion. We conclude that the relation between mean inspiratory flow and mean velocity of shortening of costal and crural diaphragm is linear and can be altered by an inspiratory load. There does not appear to be a relationship between inspiratory flow and velocity of shortening of external intercostals.  相似文献   

9.
The purpose of the present study was to examine the reflex effects of mechanical stimulation of intestinal visceral afferents on the pattern of respiratory muscle activation. In 14 dogs anesthetized with pentobarbital sodium, electromyographic activity of the costal and crural diaphragm, parasternal intercostal, and upper airway respiratory muscles was measured during distension of the small intestine. Rib cage and abdominal motion and tidal volume were also recorded. Distension produced an immediate apnea (11.16 +/- 0.80 s). During the first postapneic breath, costal (43 +/- 7% control) and crural (64 +/- 6% control) activity were reduced (P less than 0.001). In contrast, intercostal (137 +/- 11%) and upper airway muscle activity, including alae nasi (157 +/- 16%), genioglossus (170 +/- 15%), and posterior cricoarytenoid muscles (142 +/- 7%) all increased (P less than 0.005). There was greater outward rib cage motion although the abdomen moved paradoxically inward during inspiration, resulting in a reduction in tidal volume (82 +/- 6% control) (P less than 0.005). Postvagotomy distension produced a similar apnea and subsequent reduction in costal and crural activity. However, enhancement of intercostal and upper airway muscle activation was abolished and there was a greater fall in tidal volume (65 +/- 14%). In conclusion, mechanical stimulation of intestinal afferents affects the various inspiratory muscles differently; nonvagal afferents produce an initial apnea and subsequent depression of diaphragm activity whereas vagal pathways mediate selective enhancement of intercostal and upper airway muscle activation.  相似文献   

10.
The distribution of motor drive to the costal and crural diaphragm and parasternal intercostal muscles was evaluated during progressive isocapnic hypoxia in anesthetized dogs. Bipolar stainless steel wire electrodes were placed unilaterally into the costal and crural portions of the diaphragm and into the parasternal intercostal muscle in the second or third intercostal space. Both peak and rate of rise of electromyographic activity of each chest wall muscle increased in curvilinear fashion in response to progressive hypoxia. Both crural and parasternal intercostal responses, however, were greater than those of the costal diaphragm. The onset of crural activation preceded that of the costal portion of the diaphragm and parasternal intercostal muscle activation. Despite differences in the degree of activation among the various chest wall muscles, the rate of increase in activation for any given muscle was linearly related to the rate of increases for the other two. This suggests that respiratory drive during progressive hypoxia increases in fixed proportion to the different chest wall inspiratory muscles. Our findings lend further support to the concept that the costal and crural diaphragm are governed by separate neural control mechanisms and, therefore, may be considered separate muscles.  相似文献   

11.
We studied chest wall mechanics at functional residual capacity (FRC) and near total lung capacity (TLC) in 14 supine anesthetized and vagotomized dogs. During breathing near TLC compared with FRC, tidal volume decreased (674 +/- 542 vs. 68 +/- 83 ml; P less than 0.025). Both inspiratory changes in gastric pressure (4.5 +/- 2.5 vs. -0.2 +/- 2.0 cmH2O; P less than 0.005) and changes in abdominal cross-sectional area (25 +/- 17 vs. -1.0 +/- 4.2%; P less than 0.001) markedly decreased; they were both often negative during inspiration near TLC. Parasternal intercostal shortening decreased (-3.0 +/- 3.7 vs. -2.0 +/- 2.7%), whereas diaphragmatic shortening decreased slightly more in both costal and crural parts (costal -8.4 +/- 2.9 vs. -4.3 +/- 4.1%, crural -22.8 +/- 13.2 vs. -10.0 +/- 7.5%; P less than 0.05). As a result, the ratio of parasternal to diaphragm shortening increased near TLC (0.176 +/- 0.135 vs. 0.396 +/- 0.340; P less than 0.05). Electromyographic (EMG) activity in the parasternals slightly decreased near TLC, whereas the EMG activity in the costal and crural parts of the diaphragm slightly increased. We conclude that 1) the mechanical outcome of diaphragmatic contraction near TLC is markedly reduced, and 2) the mechanical outcome of parasternal intercostal contraction near TLC is clearly less affected.  相似文献   

12.
The use of sonomicrometry to study the mechanical properties of the diaphragm in vivo is presented. This method consists of the implantation of piezoelectric transducers between muscle fibers to measure the fibers' changes in length. Ultrasonic bursts are produced by one transducer upon electrical excitation and sensed by a second transducer placed 1-2 cm away. The time elapsed between the generation of the ultrasound burst and its detection is used to calculate the intertransducer distance. Excitation and sampling are done at 1.5 kHz and the output is a DC signal proportional to the length change between the transducers. Neither irreversible injury to the diaphragm nor regional differences within an anatomical part or segment were noted. Measurements were stable within the physiological range of temperature. We measured costal and crural length and velocity of contraction in anesthetized dogs during spontaneous breathing, occluded inspirations, passive lung inflation, and supramaximal phrenic nerve stimulation. We found that shortening during spontaneous breathing was 11 and 6% for crural and costal, respectively. The crural leads the costal in velocity of shortening. Supramaximal stimulation results in a velocity of shortening of 5 resting lengths X s-1. During an occluded inspiration crural shortens as much as in the nonoccluded breath, whereas costal shortens less. During passive lung inflation there is a nearly linear relationship between lung volume and diaphragm length; however, the relationships of chest wall dimensions with diaphragm length are nonlinear and cannot be described by any simple function. Some of the implications of these data on the present understanding of diaphragmatic mechanics are discussed.  相似文献   

13.
To determine whether the central respiratory drives to costal and crural portions of the diaphragm differ from each other in response to chemical and mechanical feedbacks, activities of costal and crural branches of the phrenic nerve were recorded in decerebrate paralyzed cats, studied either with vagi intact and servo-ventilated in accordance with their phrenic nerve activity or vagotomized and ventilated conventionally. Costal and crural electromyograms (EMGs) were recorded in decerebrate spontaneously breathing cats. Hypercapnia and hypoxia resulted in significant increases in peak integrated costal, crural, and whole phrenic nerve activities when the vagi were either intact or cut. However, there were no consistent differences between costal and crural neural responses. Left crural EMG activity was increased significantly more than left costal EMG activity in response to hypercapnia and hypoxia. These results indicate that the central neural inputs to costal and crural portions of the diaphragm are similar in eupnea and in response to chemical and mechanical feedback in decerebrate paralyzed cats. The observed differences in EMG activities in spontaneously breathing animals must arise from modulation of central respiratory activity by mechanoreceptor feedback from respiratory muscles, likely the diaphragm itself.  相似文献   

14.
In vivo regional diaphragm function in dogs   总被引:4,自引:0,他引:4  
A biplane videofluorographic system was used to track the position of metallic markers affixed to the abdominal surface of the left hemidiaphragm in supine anesthetized dogs. Regional shortening was determined from intermarker distances of rows of markers placed along muscle bundles in the ventral, middle, and dorsal regions of the costal diaphragm and of one row on the crural diaphragm. Considerable variability of regional shortening was seen in a given row, which was reproducible on repeat study in individual dogs but which differed between mechanical ventilation and spontaneous breathing. There were no consistent patterns among dogs. Regional shortening obtained from the change in length of rows extending from chest wall to central tendon showed no consistent differences among dogs during spontaneous breathing. At equal tidal volumes, all regions (except the ventral costal diaphragm) shortened more during spontaneous breathing than during mechanical ventilation.  相似文献   

15.
Myosin heavy chain isoforms and enzyme activities were compared between the costal and crural regions of the rat diaphragm. The percentage of heavy chain (HC) IIb in the crural region of the diaphragm was significantly (P less than 0.05) higher than that in the costal region (mean 7.3 vs. 3.0%), and the percentage of HCI was significantly lower in the crural than in the costal diaphragm (22.7 vs. 27.9%). The distributions of HCIIa and HCIId were relatively homogeneous in both regions. Succinate dehydrogenase activity in the costal diaphragm was 21% greater (P less than 0.01) than in the crural diaphragm. In contrast, there was no significant difference in the activity of phosphofructokinase in the crural and costal diaphragms. These results demonstrate that a difference in myosin heavy chain isoforms and oxidative capacity exists between the costal and crural regions of the rat diaphragm.  相似文献   

16.
This study characterized the biochemical properties of the rat diaphragm by measuring the activities of selected citric acid cycle and glycolytic enzymes. The diaphragm was removed from 10 female Sprague-Dawley rats (180 days old) and dissected into five discrete anatomic regions: crural (region 1), left posterior costal (region 2), left anterior costal (region 3), right anterior costal (region 4), and right posterior costal (region 5). Sections were assayed for total protein concentration and the activities of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH). The SDH activity in the crural region was approximately 18% lower (P less than 0.05) than that in any costal region. Furthermore, protein concentration was significantly lower (P less than 0.05) in the crural region compared with all costal regions. In contrast, costal regions 2-5 did not significantly differ from each other in protein concentration or SDH activity. LDH activity did not differ significantly (P greater than 0.05) between regions. Finally, the LDH-to-SDH activity ratio was significantly higher (P less than 0.05) in the crural diaphragm compared with all costal regions. We conclude that the crural region of the rat diaphragm is significantly lower in oxidative capacity than all the costal regions. Investigators who use a rodent model to study diaphragmatic function and plasticity should consider the oxidative heterogeneity of the diaphragm when designing experiments.  相似文献   

17.
The hydraulic pressure in the extrapleural parietal interstitium (Pepl) and in the pleural space over the costal side (Pliq) was measured in anesthetized spontaneously breathing supine adult mammals of increasing size (rats, dogs, and sheep) using saline-filled catheters and cannulas, respectively. From the Pliq and Pepl vs. lung height regressions it appears that in all species Pliq was significantly more subatmospheric than Pepl simultaneously measured at the same lung height. The vertical pleural liquid pressure gradient increased with size, amounting to -1, -0.69, and -0.44 cmH2O/cm in rats, dogs, and sheep, respectively. The vertical extrapleural liquid pressure gradient also increased with size, being -0.6, -0.52, and -0.33 cmH2O/cm in rats, dogs, and sheep, respectively. With increasing body size, the transpleural hydraulic pressure gradient (Ptp = Pepl - Pliq) at the level of the right atrium increased from 1.45 to 5.6 cmH2O going from rats to sheep. In all species Ptp increased, with lung height being greatest in the less dependent part of the pleural space.  相似文献   

18.
We tested the hypothesis that the mechanical arrangement of costal (COS) and crural (CRU) diaphragms can be changed from parallel to series when direct or indirect transmission of tension occurs. Ratio of rib cage to abdominal displacement (RC/AB) resulting from separate COS and CRU stimulations were used to measure RC expanding action. Hyperinflation in six dogs caused RC/AB with COS and CRU stimulations to change progressively from 0.53 +/- 0.07 (SE) and 0.03 +/- 0.05 at functional residual capacity (FRC) to -0.48 +/- 0.08 and -0.46 +/- 0.05 at 68% inspiratory capacity, respectively. Liquid substitution of abdominal contents in six other dogs equalized abdominal pressure swings (delta Pab), without changing chest wall elastic properties or geometry, or costal RC/AB (0.35 +/- 0.07 before and 0.33 +/- 0.06 after) but caused crural RC/AB to change from 0.01 +/- 0.05 to 0.31 +/- 0.01. We conclude that hyperinflation changes fiber orientation, allowing direct transmission of tension between COS and CRU, which become linked mechanically in series (the diaphragm acts as a unit with RC deflating action); and equalization of delta Pab causes indirect transmission of tension between COS and CRU, which become linked in series (the diaphragm acts as a unit with RC inflating action).  相似文献   

19.
Differential costal and crural diaphragm compensation for posture changes   总被引:2,自引:0,他引:2  
The electromyographic (EMG) activities of the costal and crural diaphragm were recorded from bipolar fine-wire electrodes placed in the costal fibers adjacent to the central tendon and in the anterior portions of the crural fibers in 12 anesthetized cats. The EMG activities of costal and crural recordings were compared during posture changes from supine to head up and during progressive hyperoxic hypercapnia in both positions. The activity of both portions of the diaphragm was greater in the head up compared with supine posture at all levels of CO2; and increases in crural activity were greater than those in costal activity both as a result of changes in posture and with increasing CO2 stimuli. These results are consistent with the concept that diaphragm activation is modulated in response to changes in resting muscle length, and further, that neural control mechanisms allow separate regulation of costal and crural diaphragm activation.  相似文献   

20.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号