首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies of ours have shown that palatal mesenchymal cells from the human embryo (HEPM cells) are responsive both to the glucocorticoid dexamethasone (DEX) and epidermal growth factor (EGF) through mechanisms associated with cytoplasmic and cell surface receptors, respectively. HEPM cell growth was inhibited by DEX and was stimulated by EGF. In the present study, the interactions between DEX and EGF were investigated. DEX (10–6 M) enhanced EGF-stimulated HEPM cell growth as assessed by an increase in cell number and ornithine decarboxylase activity under serum-free cell culture conditions. DEX also enhanced the specific binding of 125I-EGF to these cells, which was reflected in an increase in both the number and the affinity of EGF receptors. EGF (1 ng/ml), on the other hand, decreased the number of sites per cell which specifically bind 3H-DEX. EGF completely prevented the inhibition by DEX of HEPM cell growth. These results indicate that DEX and EGF interact with each other in the process(es) regulating HEPM cell growth. This interaction may be partially influenced by direct modulation of existing receptors for DEX and EGF present in the cells.  相似文献   

2.
The effects of factors known to influence bone metabolism were examined using the osseous cell line CFK1. Parathyroid hormone (PTH) and dexamethasone (DEX) appeared to enhance the formation of cell foci of CFK1 cells in culture whereas retinoic acid (RA) caused a marked alteration in individual cell morphology. Bone morphogenetic protein (BMP-2) and PTH increased alkaline phosphatase activity, however, this index of differentiation was suppressed by epidermal growth factor (EGF), DEX, and RA. BMP-2 and EGF each stimulated DNA synthesis in a dose-dependent manner and enhanced cell numbers, but, no synergistic response of EGF and BMP-2 was observed. PTH and DEX failed to significantly alter cell number or EGF-stimulated DNA synthesis or cell proliferation. Although RA treatment of CFK1 cells resulted in a reduction in cell number compared to control, pretreatment with RA enhanced EGF-stimulated DNA synthesis and proliferative effects. At least part of this effect was by increasing the EGF receptor binding capacity of the cells. Furthermore, using cell cycle analysis, addition of EGF stimulated the progression of RA-treated cells into the DNA synthesis (S) phase with a reduced lag time. EGF and BMP-2, therefore, appear to exert a role in the expansion dynamics of the CFK1 population although BMP-2 may also enhance differentiation. PTH and DEX may act primarily to modulate the differentiated function of the CFK1 cells. RA inhibited cell proliferation and may mediate differentiation towards a less established cell population with upregulation of EGF receptors. The CFK1 cell model may, therefore, provide insight into microenvironmental control of growth and differentiation of precursor osseous cells.  相似文献   

3.
Human squamous cell carcinoma cell lines often possess increased levels of epidermal growth factor (EGF) receptor. The growth of these EGF receptor-hyperproducing cells is usually inhibited by EGF. To investigate the mechanism of EGF-mediated inhibition of cell growth, variants displaying alternate responses to EGF were isolated from two squamous cell carcinoma lines, NA and Ca9-22; these cell lines possess high numbers of the EGF receptor and an amplified EGF receptor (EGFR) gene. The variants were isolated from NA cells after several cycles of EGF treatment and they have acquired EGF-dependent growth. Scatchard plot analysis revealed a decreased level of EGF receptor in these ER variants as compared with parental NA cells. Southern blot analysis and RNA dot blot analysis demonstrated that the ER variants had lost the amplified EGFR gene. One variant isolated from Ca9-22 cells, CER-1, grew without being affected by EGF. CER-1 cells had higher numbers of EGF receptor than parental Ca9-22 but similar EGFR gene copy number. Flow cytometric analysis indicated an increase in ploidy and cell volume which may give rise to the increase in receptor number per cell. The EGF receptors on both Ca9-22 and CER-1 cells were autophosphorylated upon EGF exposure in a similar manner suggesting no obvious alteration in receptor tyrosine kinase. However, very efficient down-regulation of the EGF receptor occurred in CER-1 cells. These data suggest two independent mechanisms by which EGF receptor-hyperproducing cells escape EGF-mediated growth inhibition: one mechanism is common and involves the loss of the amplified EGFR genes, and another is novel and involves the efficient down-regulation of the cell-surface receptor.  相似文献   

4.
Squamous cell carcinomas have recently been shown to contain increased numbers of epidermal growth factor (EGF) receptors. Since EGF has an important role in epithelial growth and differentiation, it is possible that modulation of its receptor may have an important role in neoplasia. In an attempt to further explore the relationship of EGF receptor expression to malignant transformation, we examined 14 squamous cell carcinoma cell lines of the esophagus for the number and affinity of EGF receptors. Seven cell lines were newly isolated by this laboratory and recently characterized. The seven additional cell lines were obtained from Japan (4 cell lines) and South Africa (3 cell lines). Surprisingly, we found that esophageal carcinomas contained lowered quantities of surface EGF receptors (2- to 100-fold) and that the affinity of the EGF receptor was increased (6- to 100-fold) when compared to normal esophageal epithelial cells. Moreover, the biologic response of esophageal carcinoma cells to EGF differed markedly from that of other squamous cell tumor cells exhibiting elevated numbers of receptors, such as A431 and SCC-15. Human esophageal carcinoma cells were maximally stimulated by the addition of 5 ng/ml of EGF, similar to normal esophageal keratinocytes, but in contrast to normal cells were not inhibited by the higher concentrations tested (up to 40 ng/ml). On the other hand, addition of any EGF to the medium (beyond that normally present in serum) was found to dramatically inhibit the growth of A431 and SCC-15 cells. Our findings indicate that squamous cell neoplasia is not dependent upon increased numbers of cell surface EGF receptors, that EGF receptor number may have a determinant role in EGF cell toxicity, and that the stimulatory response of cells to EGF may reflect a complex function of EGF receptor number, affinity, and occupancy.  相似文献   

5.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

6.
Addition of 0.14 microM dexamethasone (DEX) to young log-phase WI38 cultures seeded at various densities in serum-free medium containing 4.1 nM epidermal growth factor (EGF) resulted in a synergistic increase in proliferation and final cell density. The action of DEX plus EGF was stimulatory but not synergistic in young confluent cultures. DEX plus EGF had no synergistic effect on senescent cells either during log phase or at confluence. Analysis of the effect of DEX on [125I]EGF binding revealed no statistically significant changes in either the number of binding sites or the apparent dissociation constant of the EGF-receptor complex.  相似文献   

7.
8.
The stimulation of DNA synthesis by epidermal growth factor (EGF) has been studied for a cell line having properties useful for investigating the mechanism of action of EGF in epithelial cell populations. These studies employ a mouse keratinocyte cell line (MK), isolated by Weissman and Aaronson (1983), which is stringently dependent on exogenous EGF for growth in serum containing medium. The studies reported here characterize the compliment of EGR receptors present on the surface of MK cells and demonstrate the regulatory influence of other hormones on the capacity of EGF to stimulate DNA synthesis. Up-regulated MK cells contain approximately 22,000 EGF receptors per cell, but when the cells are grown in the presence of EGF the receptor number is reduced to about 4,000. It is estimated that only a small number of high-affinity receptors (less than 500) are required for EGF-dependent cell proliferation. In contrast to its action in fibroblastic cells, dexamethasone is a strong inhibitor of EGF-stimulated DNA synthesis of MK cells. Insulin at high concentrations, or insulin-like growth factors I or II (IGF-I, IGF-II) at physiological concentrations, synergistically enhance the EGF response. Interestingly, insulin or IGF-I or II are also able to reverse most of the dexamethasone inhibition of DNA synthesis. Transforming growth factor-beta (TGF-beta) inhibits, in reversible manner, the EGF stimulation of DNA synthesis and this inhibition is not overcome by insulin. TGF-beta receptors have been measured in MK cells and Scatchard analysis indicates approximately 20,000 receptors per cell. None of the modulatory hormones (insulin, dexamethasone, TGF-beta) significantly altered 125I-EGF binding characteristics in MK cells, suggesting a point of action distal to 125I-EGF binding.  相似文献   

9.
The effects of insulin, somatomedin-C (Sm-C), epidermal growth factor (EGF), fibroblast growth factor (FGF), vitamin E, and retinoic acid on growth and function of immature cultured pig Sertoli cells were investigated. All these factors, except vitamin E, stimulated Sertoli cell DNA synthesis and proliferation. The mitogenic effects of insulin observed only at micromolar concentrations were similar to those induced by nanomolar concentrations of Sm-C or EGF, but significantly less than those induced by FGF. The effects of EGF and Sm-C were almost additive, whereas those of Sm-C and FGF were synergistic. After a 6-day treatment, FGF and retinoic acid induced a significant increase in the number of follicle-stimulating hormone (FSH) receptors per cell, and in FSH-induced cyclic adenosine 3',5'-monophosphate (cAMP) production. Sm-C, which alone had no effect on these two parameters, potentiated FGF action. Basal plasminogen activator activity was enhanced after the 6-day treatment with EGF plus insulin and, particularly, with FGF plus insulin. Similarly, the response of the latter group to FSH was significantly higher than in any other group of cells. FGF was also able to stimulate cell multiplication and enhanced the FSH receptor number of Sertoli cells isolated from 15- and 26-day-old rats. Thus, FGF is the most potent known mitogenic factor for cultured Sertoli cells, and it stimulates the phenotypic expression of these cells.  相似文献   

10.
Serum, but not epidermal growth factor (EGF), stimulated the release of radiolabeled inositol phosphates from human embryo palate mesenchyme (HEPM) cells prelabeled with [3H]-myoinositol. Pretreatment of cells with 10(-6) M dexamethasone (DEX) for 48 h had no effect on the release of inositol phosphates in response to serum. Furthermore, although treatment of the glucocorticoid-sensitive A/J strain of mouse embryo palate mesenchyme (MEPM) cells with 10(-6) M DEX inhibited their proliferation by 40%, it had no effect on the activity of phospholipase(s) C. However, DEX did enhance the incorporation of [3H]-myoinositol into membrane lipids. We interpret these data to mean that 1) serum factors enhance metabolism of inositol lipids in HEPM cells, 2) DEX does not interfere with the primary events by which agonists utilize metabolism of inositol lipids as a mechanism for transmembrane signaling, and 3) DEX may affect synthesis of phosphoinositides, as reported by Grove et al. (Biochem. Biophys. Res. Commun. 110:200-207, 1983; J. Craniofac. Genet. Dev. Biol. Suppl. 2:285-292, 1986).  相似文献   

11.
To investigate possible mechanisms through which 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) affects cell proliferation and differentiation, we have studied the effects of 1,25-(OH)2D3 on the binding and mitogenic activity of epidermal growth factor (EGF) in RCJ 1.20 cells, an established, non-tumorigenic cell line derived from 21-day-old fetal rat calvaria. 1,25-(OH)2D3 caused a dose- and time-dependent 2- to 3-fold increase in the number of receptors for EGF. The 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 metabolites of vitamin D3 were ineffective in eliciting changes in EGF binding. Saturation and Scatchard analyses indicated that an increase in available unoccupied high affinity EGF binding sites was responsible for the 1,25-(OH)2D3-induced EGF binding. In addition, 1,25-(OH)2D3 enhanced EGF-dependent growth of RCJ 1.20 cells in soft agar. The potentiation of EGF effects on RCJ 1.20 cell growth by 1,25-(OH)2D3 may be related to the 1,25-(OH)2D3 regulation of EGF binding. However, the induction of anchorage-independent growth by 1,25-(OH)2D3 appears to be due to the stimulation of transforming growth factor beta-like activity. These results provide a possible explanation for the mechanism whereby the effects of 1,25-(OH)2D3 on cell proliferation and bone metabolism may be mediated.  相似文献   

12.
We have previously shown that tumor necrosis factor (TNF) can increase the number of epidermal growth factor (EGF) receptors on human FS-4 fibroblasts and that this increase may be related to the mitogenic action of TNF in these cells. Here we show that TNF stimulated the growth of FS-4 fibroblasts in a chemically defined, serum-free medium in the absence of EGF. Anti-EGF receptor antibody, which blocked the mitogenic effects of EGF in FS-4 cells, did not inhibit the mitogenic action of TNF in serum-free or serum-containing medium, indicating that EGF or an EGF-like molecule was not responsible for the mitogenic effects of TNF. However, the simultaneous addition of TNF and EGF to cells grown in serum-free medium resulted in a synergistic stimulation of DNA synthesis and cell growth. The actions of TNF and EGF were also examined in growth-arrested FS-4 cells and were compared with the action of platelet-derived growth factor (PDGF). In the absence of other growth factors, TNF was a relatively weak mitogen in growth-arrested cells, compared with EGF or PDGF. Nevertheless, TNF synergized with EGF or high doses of PDGF in stimulating DNA synthesis. Furthermore, antibodies specific for TNF or the EGF receptor were used to selectively inhibit the actions of these two factors, after specific incubation periods, in growth-arrested cells treated concurrently with EGF and TNF. To produce an optimal stimulation of DNA synthesis, EGF had to be present for a longer period of time than TNF. We conclude that in their synergistic action on growth-arrested FS-4 cells, EGF was responsible for driving the majority of the cells into S phase, while TNF appeared to make the cells more responsive to the mitogenic action of EGF. The findings indicate that TNF can cooperate with, and enhance the actions of, EGF in promoting DNA synthesis and cell division.  相似文献   

13.
Cell signalling in the developing mammalian palate appears to involve various growth factors and hormones. An important developmental role for the transforming growth factor-beta (TGF-beta) class of growth factors is suggested by the immunolocalization of TGF-beta 1 in the palate during its ontogeny. This study examined the effects of TGF-beta stimulation of, as well as TGF-beta receptor profiles in, murine embryonic palate mesenchymal (MEPM) and human embryonic palate mesenchymal (HEPM) cells. Results showed that TGF-beta 1 (1 ng/ml) stimulated proliferation of HEPM cells and inhibited proliferation of MEPM cells in a dose-dependent manner. The time course of 125I-TGF-beta 1 binding to specific receptors was determined by incubating cells in the presence of 170 pM 125I-TGF-beta 1 for up to 4 h. In both cell types, at 37 degrees C, the binding of 125I-TGF-beta decreased linearly over 4 h, while at 4 degrees C, binding increased with time of incubation. Incubation of both cell types at 4 degrees C for 4 h, with increasing concentrations of 125I-TGF-beta 1, resulted in binding which demonstrated saturation kinetics. Scatchard analyses revealed one class of receptors for HEPM (K 32.3 pM) and MEPM (K 26.3 pM). However, SDS-PAGE analyses of 125I-TGF-beta chemically crosslinked to specific receptor sites revealed that both cell types contained the types I (65,000 Mr) and III (230,000 Mr) TGF-beta receptors while MEPM also contained the type II (86,000 Mr) receptor. Binding studies further demonstrated the ability of platelet-derived growth factor to transmodulate TGF-beta binding. These results indicate that the HEPM cell line and primary cultures of MEPM cells, although obtained from palates at similar developmental stages, are dramatically different in their responsiveness to TGF-beta and have disparate TGF-beta receptor profiles.  相似文献   

14.
An epidermal growth factor (EGF) receptor-interactive monoclonal antibody (151-IgG) that inhibits EGF binding to PC12 rat pheochromocytoma cells and to various other cell types has been produced. The hybridoma clone was obtained by fusing Sp2/O-Ag14 myeloma cells with splenocytes from Balb/C mice which had been immunized with n-octyl glucoside-solubilized protein from isolated PC12 cell plasma membranes. The antibody is an IgG which binds to protein A. 151-IgG did not bind EGF. At 0.5 degrees C 151-IgG was directly competitive for EGF binding to PC12 cells. It also inhibited EGF binding to bovine corneal endothelial cells, rabbit corneal fibroblasts, human foreskin fibroblasts, and normal rat kidney cells, and it slightly enchanced EGF binding to SW 3T3 cells. PC12 cells have the same number of binding sites for 151-IgG as for EGF (approximately 27,000 sites/cell). 151-IgG inhibited the photoactivatable cross-linking of EGF to a protein of Mr 170,000 in PC12 cells. 151-IgG inhibited the EGF-stimulated incorporation of [3H]thymidine into quiescent bovine corneal endothelial cells, rabbit corneal endothelial cells, epithelial normal rat kidney cells, and SW 3T3 cells while it enhanced the EGF-stimulated [3H]thymidine incorporation into quiescent human foreskin fibroblasts. 151-IgG by itself possessed intrinsic EGF-like activity for human fibroblasts but not for the other cells tested. This suggests that there is a difference in EGF receptors and/or processing in these normal cell types.  相似文献   

15.
Long-term biological effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and transforming growth factor-beta (TGF-beta) were examined with human epidermoid carcinoma KB cells. EGF inhibited the growth of KB cells in both serum-containing and serum-free synthetic media by reducing the growth rate and by lowering the saturation density. The cells cultured with EGF showed relatively high motility and grew dispersely as single cells, whereas the cells cultured in the absence of EGF grew in clusters. Although TGF-beta itself did not inhibit the growth of KB cells, it augmented the growth inhibition by EGF. TGF-beta also affected the cell morphology. In the presence of TGF-beta, the cells became flattened and actin stress fibers were well developed compared to those cultured in its absence. The effects of EGF on growth, cell motility, and cell morphology were reversible. Tyrosine phosphorylation of EGF receptors was continuously observed for at least 50 h in the presence of EGF. TGF-beta did not increase the phosphorylation induced by EGF. These results suggested that signals continuously transmitted through EGF receptors caused the changes in cell growth and morphology and that TGF-beta did not act on the cells by modulating binding of EGF to its receptors or activation of the receptor kinase. In contrast to EGF and TGF-beta, neither insulin nor IGF-I affected cell morphology or growth, although KB cells express their receptors and the receptor kinases were also continuously activated during exposure of the cells to insulin or IGF-I.  相似文献   

16.
17.
The transferrin (Tf) receptor is a major transmembrane protein which provides iron for normal and malignant cell growth. Epidermal growth factor (EGF) has been reported to rapidly and transiently alter the number of surface Tf receptors in normal and transformed epithelial cells. To investigate mechanisms of EGF-induced changes in surface Tf display, EGF effects on surface Tf receptors were compared in two cell lines which differ in their number of EGF receptors and growth responses to EGF. In cloned A431 cells with high receptor numbers which are growth-inhibited by EGF, EGF caused a 50% decrease in Tf receptor expression after 30 min. In contrast, EGF induced a rapid, transitory increase (within 5 min) in the number of surface Tf receptors on KB carcinoma cells which returned to basal levels by 15 min. The observed changes in Tf receptor display were due to altered receptor distribution and not changes in ligand affinity or total cellular transferrin receptor pools. Anti-EGF receptor monoclonal antibody blocked effects of EGF on transferrin receptor expression. Since the antibody is internalized and causes EGF receptor down-regulation, effects on transferrin receptor expression were independent of these events. EGF-induced alterations in Tf receptor display occurred even when cells were pretreated with colchicine, suggesting that changes in surface Tf binding were not mediated by cytoskeletal components. Na orthovanadate, which mimics some early cellular effects of EGF, duplicated EGF's effects on A431 Tf receptors, but had no effect on KB cells, suggesting these responses occur by differing mechanisms. To determine whether EGF caused changes in Tf receptor phosphorylation, 32P-labelled Tf receptors were immunoprecipitated after EGF treatment. After exposure to EGF, A431 cells showed no change in Tf phosphorylation, but KB cells showed a transient, 6-fold increase in transferrin receptor phosphorylation on serine residues. In both A431 and KB cells, phorbol ester (PMA) also increased phosphorylation on transferrin receptors, but had little effect on surface Tf receptor expression. In malignant cell lines, EGE induces rapid, variable changes in transferrin receptor expression and phosphorylation which differ from the effects of PMA. These early responses to EGF appear to differ with the cell type and correlate poorly with alterations in Tf receptor phosphorylation. These results suggest Tf receptor phosphorylation does not regulate Tf receptor display in all cells.  相似文献   

18.
The effects of transforming growth factor beta (TGF-beta) on epidermal growth factor (EGF) receptor content and EGF action were studied in cultured granulosa cells from immature diethylstilbestrol-implanted rats. During follicle-stimulating hormone (FSH)-induced differentiation in vitro, EGF receptors increased by 20-fold as measured by the binding of 125I-EGF to the intact cells. Addition of TGF-beta during the 48-h culture period amplified the stimulatory effects of FSH on EGF receptors up to 2-fold, with ED50 and maximal concentrations of 2.5 and 8 pM, respectively. Also TGF-beta alone in amounts from 1.6 to 16 pM increased EGF receptor content 4-fold. The stimulatory effects of TGF-beta were due to increased numbers of EGF receptors/cell, since the growth factor had no effect on the Kd (3-5 X 10(-11) M) of the high-affinity EGF binding site. TGF-beta action was observed within 20 h of granulosa cell culture and was maximal by 48 h of a 96-h culture. The stimulatory actions of TGF-beta in gonadotropin-induced cells were exerted through the cAMP effector system of the granulosa cell, since the growth factor also amplified the induction of EGF receptors by cholera toxin, forskolin, and 8-bromo-cAMP. The augmentation of EGF receptors by TGF-beta resulted in a parallel 2-fold increase in the inhibitory effects of EGF on FSH-induced cAMP production and luteinizing hormone receptor expression during granulosa cell development. TGF-beta did not increase granulosa cell numbers during culture although it elevated [3H]thymidine incorporation into DNA by 2-fold over that of FSH-treated cells. These results indicate that TGF-beta regulates the effects of both FSH and EGF during granulosa cell differentiation and provides evidence that ovarian function may be controlled by the combined actions of gonadotropins and multiple growth factors.  相似文献   

19.
The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-alpha/ml or 20 ng basic FGF/ml. TGF-beta (0.02 ng/ml), which did not affect cell proliferation when added alone to the culture medium, inhibited the EGF- and TGF-alpha-induced growth. The synthetic androgen R1881 (0.1 nM) stimulated cell proliferation three-fold and increased the number of EGF receptors from 11500 to 28500 sites/cell. One of the mechanisms involved in androgen action on these cells is therefore an increased EGF receptor expression and increased sensitivity to EGF. TGF-beta did not directly affect androgen-responsive growth but inhibited the synergistic effect of EGF. A considerable expression of TGF alpha (precursors) could be demonstrated on the cells by immunohistochemical staining. However the staining intensity was not affected by androgens. These results make it less likely that androgen-responsive growth is mediated by regulation of secretion of an EGF- or TGF alpha-like activity, which in turn acts in an autocrine manner to stimulate growth. Estrogens, progestagens and antiandrogens do not inhibit androgen responsive growth of LNCaP cells but have striking growth stimulatory effects, increase EGF receptor level and increase acid phosphatase secretion. LNCaP cells contain a modified androgen receptor system with respect to both steroid specificity and antiandrogen sensitivity. It has recently been shown that the stimulatory effects are due to a mutated amino acid in the steroid binding domain of the androgen receptor.  相似文献   

20.
Previous studies have shown that the nontransformed AKR-2B mouse embryo derived cell line may growth arrest by two separate mechanisms in the G1 phase of the cell cycle-growth factor deficiency arrest (G0) and low molecular weight nutrient deficiency arrest. An examination of epidermal growth factor (EGF) receptors under the different resting or growth conditions has shown that rapidly growing cells or cells arrested due to growth factor deficiency have the expected amount of 125I-EGF binding with approximately 105 receptors per cell being present in G0 arrested cells. In contrast, cells arrested due to nutrient deficiency show a reduction in 125I-EGF binding to 10--20% of that observed under the other conditions. This effect appears to be due to decreased receptor number and not to a change in the affinity of the receptor. Stimulation of DNA synthesis by nutrient replenishment causes a tenfold increase in EGF binding 20 hours later, with some increase in binding being detectable as early as six hours. The increase in binding is inhibited by cycloheximide and actinomycin D. This suggests that new mRNA synthesis as well as increased protein synthesis is required for the increase in EGF binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号