首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER)-resident proteins TAP, tapasin and ERp57 are the core components of the major histocompatibility complex (MHC) class I peptide-loading complex and play an important role in peptide loading by MHC class I-beta(2)microglobulin dimers. ERp57 and tapasin form a stable disulfide-linked heterodimer within the peptide-loading complex. We demonstrate that ERp57-deficient loading complexes, obtained by expression in a tapasin-negative cell line of a tapasin mutant (C95A) that is not able to form a disulfide bond with ERp57, are prone to aggregation. We studied the assembly, stability and aggregation of the core loading complex using cell lines stably expressing fluorescently tagged tapasin (wild type or C95A mutant) and TAP1. Part of the loading complexes containing the tagged C95A tapasin and TAP1 were sequestered in the ER, without change of their ER transmembrane topology, and were surrounded by a mesh of filaments at the cytosolic side, resulting in formation of protein aggregates with characteristic morphology. Protein aggregates were associated with changes in ER protein turnover but did not affect the cell viability and did not induce the unfolded protein response. Fluorescence resonance energy transfer analysis of the aggregate-free ER fraction revealed that lack of ERp57 did not affect the stoichiometry or stability of tapasin-TAP1 interactions in the assembled 'soluble' core loading complexes. We conclude that the presence of ERp57 is important for the stability of core loading complexes, and that in its absence, the core loading complexes may form stable aggregates within the ER.  相似文献   

2.
Protein disulfide isomerases (PDIs) are responsible for catalyzing the proper oxidation and isomerization of disulfide bonds of newly synthesized proteins in the endoplasmic reticulum (ER). The ER contains many different PDI-like proteins. Some, such as PDI, are general enzymes that directly recognize misfolded proteins while others, such as ERp57 and ERp72, have more specialized roles. Here, we report the high-resolution X-ray crystal structure of the N-terminal portion of ERp72 (also known as CaBP2 or PDI A4), which contains two a0a catalytic thioredoxin-like domains. The structure shows that the a0 domain contains an additional N-terminal β-strand and a different conformation of the β5-α4 loop relative to other thioredoxin-like domains. The structure of the a domain reveals that a conserved arginine residue inserts into the hydrophobic core and makes a salt bridge with a conserved glutamate residue in the vicinity of the catalytic site. A structural model of full-length ERp72 shows that all three catalytic sites roughly face each other and positions the adjacent hydrophobic patches that are likely involved in protein substrate binding.  相似文献   

3.
Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-Å resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.  相似文献   

4.
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus.  相似文献   

5.
Lectin chaperone calreticulin is well known to interact with ERp57 which is one of PDI family proteins. The interaction of ERp57 with calreticulin is believed to assist disulfide bond formation of nascent glycoprotein in the ER. Various kinds of PDI family proteins are present in the ER, however, their precise roles have been unclear. In this study, interaction assay between PDI family proteins and calreticulin by SPR analysis was performed. Our analysis revealed for the first time formation of a 1:1 complex between ERp29 and calreticulin. The dissociation constant of interaction between ERp29 and calreticulin was shown to be almost identical to ERp57–calreticulin interaction. We speculate that the recognition site of ERp29 within calreticulin is different from that of ERp57.  相似文献   

6.
T cell epitopes are peptides, for instance derived from foreign, mutated or overexpressed proteins, that are displayed by MHC molecules on the cell surface and that are recognized by T lymphocytes. Knowledge of the identity of epitopes displayed by MHC molecules is of high value for diagnostic purposes and for the development of prophylactic and therapeutic immunotherapy regimens. Here we review key techniques in MHC class I epitope definition and we discuss recent developments in epitope discovery and their implications. Developments in epitope discovery strategies should ultimately lead to the definition of the MHC-associated peptidome.  相似文献   

7.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Using restriction fragment length polymorphism (RFLP) we identified 26 unique major histocompatibility complex (MHC) genotypes in 104 water pythons. We observed a significant independent association between reduced blood parasite load (Hepatozoon sp.) and python body length/age, presence of a specific RFLP fragment (C-fragment) and the overall number of fragments. The parasite has a negative impact on several python life-history traits such as growth, nutritional status and longevity. Thus, the C-fragment could be considered a 'good gene' (a fitness-enhancing genetic element). However, while the number of fragments affected parasite load, the association between level of parasitaemia and fragment number was not linear, and, hence, minimum parasite infection level was achieved at an intermediate number of fragments. Intermediate MHC fragment numbers were also observed among the largest/oldest pythons, suggesting that both a specific fragment and intermediate levels of MHC polymorphism enhanced python longevity. Thus, our results suggest python MHC is subject to both frequency-dependent and balancing selection.  相似文献   

9.
Calreticulin is a lectin chaperone of the endoplasmic reticulum (ER). In calreticulin‐deficient cells, major histocompatibility complex (MHC) class I molecules travel to the cell surface in association with a sub‐optimal peptide load. Here, we show that calreticulin exits the ER to accumulate in the ER–Golgi intermediate compartment (ERGIC) and the cis‐Golgi, together with sub‐optimally loaded class I molecules. Calreticulin that lacks its C‐terminal KDEL retrieval sequence assembles with the peptide‐loading complex but neither retrieves sub‐optimally loaded class I molecules from the cis‐Golgi to the ER, nor supports optimal peptide loading. Our study, to the best of our knowledge, demonstrates for the first time a functional role of intracellular transport in the optimal loading of MHC class I molecules with antigenic peptide.  相似文献   

10.
Sequence-based typing (SBT) was developed for major histocompatibility complex (MHC) class I and class II alleles in humans. We report here the development and application of a SBT method for alleles of the chicken BF2 locus (the more polymorphic of the two MHC class I loci in chickens). Exon 2 of the BF2 gene was selectively amplified from genomic DNA using a BF2 locus-specific PCR primer. Exon 2 sequences were sufficient to identify the 21 distinct BF2 alleles described in standard B haplotypes of Leghorns and in commercial broiler-breeder lines. Sixty-six samples from MHC typed, pedigreed chickens were tested, including 50 different heterozygous combinations. BF2 sequences from all B homozygotes were successfully amplified, and all combinations of BF2 alleles in heterozygotes were co-amplified equally. The two different BF2 alleles in heterozygotes could be identified unambiguously by distinct sequence motif patterns. In tests of samples of unknown B genotype in commercial broiler-breeder flocks, we identified expected BF2 alleles as well as an allele not previously encountered in one of the lines.  相似文献   

11.
Bordner AJ  Abagyan R 《Proteins》2006,63(3):512-526
Since determining the crystallographic structure of all peptide-MHC complexes is infeasible, an accurate prediction of the conformation is a critical computational problem. These models can be useful for determining binding energetics, predicting the structures of specific ternary complexes with T-cell receptors, and designing new molecules interacting with these complexes. The main difficulties are (1) adequate sampling of the large number of conformational degrees of freedom for the flexible peptide, (2) predicting subtle changes in the MHC interface geometry upon binding, and (3) building models for numerous MHC allotypes without known structures. Whereas previous studies have approached the sampling problem by dividing the conformational variables into different sets and predicting them separately, we have refined the Biased-Probability Monte Carlo docking protocol in internal coordinates to optimize a physical energy function for all peptide variables simultaneously. We also imitated the induced fit by docking into a more permissive smooth grid representation of the MHC followed by refinement and reranking using an all-atom MHC model. Our method was tested by a comparison of the results of cross-docking 14 peptides into HLA-A*0201 and 9 peptides into H-2K(b) as well as docking peptides into homology models for five different HLA allotypes with a comprehensive set of experimental structures. The surprisingly accurate prediction (0.75 A backbone RMSD) for cross-docking of a highly flexible decapeptide, dissimilar to the original bound peptide, as well as docking predictions using homology models for two allotypes with low average backbone RMSDs of less than 1.0 A illustrate the method's effectiveness. Finally, energy terms calculated using the predicted structures were combined with supervised learning on a large data set to classify peptides as either HLA-A*0201 binders or nonbinders. In contrast with sequence-based prediction methods, this model was also able to predict the binding affinity for peptides to a different MHC allotype (H-2K(b)), not used for training, with comparable prediction accuracy.  相似文献   

12.
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.  相似文献   

13.
Structural prediction of peptides bound to MHC class I   总被引:1,自引:0,他引:1  
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.  相似文献   

14.
Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated.  相似文献   

15.
T lymphocytes play a key role in the immune response to both foreign and self peptide antigens, which they recognize in combination with MHC molecules. In the past it has been difficult to analyse objectively the specificity, frequency and intensity of T cell responses. The recent application of fluorescent-labelled MHC class I multimers, however, has provided a powerful experimental approach to the direct visualisation of antigen-specific T cells. As a result, our perspective of how T cells respond to both viruses and other antigens in vivo has been greatly enhanced.  相似文献   

16.
The major histocompatibility complex (MHC) is present at a single chromosomal locus of all jawed vertebrate analyzed so far, from sharks to mammals, except for teleosts whose orthologs of the mammalian MHC-encoded genes are dispersed at several chromosomal loci. Even in teleosts, several class IA genes and those genes directly involved in class I antigen presentation preserve their linkage, defining the teleost MHC class I region. We determined the complete nucleotide sequence of the MHC class I region of the inbred HNI strain of medaka, Oryzias latipes (northern Japan population-derived), from four overlapping bacterial artificial chromosome (BAC) clones spanning 540,982 bp, and compared it with the published sequence of the corresponding region of the inbred Hd-rR strain of medaka (425,935 bp, southern Japan population-derived) as the first extensive study of intraspecies polymorphisms of the ectotherm MHC regions. A segment of about 100 kb in the middle of the compared sequences encompassing two class Ia genes and two immunoproteasome subunit genes, PSMB8 and PSMB10, was so divergent between these two inbred strains that a reliable sequence alignment could not be made. The rest of the compared region (about 320 kb) showed a fair correspondence, and an approximately 96% nucleotide identity was observed upon gap-free segmental alignment. These results indicate that the medaka MHC class I region contains an ∼100-kb polymorphic core, which is most probably evolving adaptively by accumulation of point mutations and extensive genetic rearrangements such as insertions, deletions and duplications. The nucleotide sequence data of HNI MHC class I region reported in this paper have been submitted to the DDBJ/EMBL/GenBank and were assigned the accession number AB183488.  相似文献   

17.
Dunn DS  Tait BD  Kulski JK 《Immunogenetics》2005,56(10):765-768
There are five polymorphic Alu insertion (POALIN) loci within the major histocompatibility complex (MHC) class I region that have been strongly associated with HLA class I alleles, such as HLA-A1, HLA-A2 and HLA-B57. In order to assess the variability and frequency of POALIN distribution within two common HLA-B haplotypes, we detected the presence of the MHC class I POALIN by PCR in a panel of 15 individuals with HLA-B57 and 47 homozygous individuals with 7.1 AH (HLA-B7, -Cw7, -A3) obtained from the Australian Bone Marrow Donor Registry, and also from four families (25 individuals) containing the HLA-B57 allele. Only two of the 47 HLA-B7 genotypes had a detectable POALIN, whereas all of the HLA-B57 genotypes had at least one or more POALINs present, confirming that certain MHC class I haplotypes are relatively POALIN-free and others are POALIN-enriched. Six distinct HLA-B57 haplotypes, based on differences at the HLA-A locus and three of five POALIN loci, were identified that appear to have evolved by different mechanisms, including either by shuffling different combinations of conserved alpha and beta blocks or by recombination events involving two or more previously generated HLA-B57 haplotypes.  相似文献   

18.
鸡MHC与传染性疾病遗传抗性的相关性研究进展   总被引:4,自引:0,他引:4  
鸡是我国主要的家禽品种,抗病分子育种在鸡的疾病尤其是传染病控制中有着重要地位,抗性基因选择是其技术关键。鸡主要组织相容性复合体(MHC)基因具有高度多态性,与多种传染性疾病抗性紧密相关,受到家禽育种专家的高度关注。文章介绍国外有关鸡MHC与传染性疾病抗性的相关性及抗性基因研究进展,并展望其在鸡抗病育种中的应用前景。  相似文献   

19.
The Rhadinovirus ovine herpesvirus-2 (OvHV-2) is the most common causative agent of malignant catarrhal fever (MCF) in clinically susceptible ruminants including cattle and bison. American bison (Bison bison) are highly susceptible to clinical MCF. Nevertheless, approximately 20% of bison on ranches or in feedlots become infected with the virus without developing clinical disease. Defining the genetic basis for differences in susceptibility between bison could facilitate development of improved control strategies for MCF. One genetic region that influences susceptibility to infectious diseases is the major histocompatibility complex (MHC). In this study, a Bison bison (Bibi) DRB3 oligonucleotide microarray was used to type 189 bison from 10 herds where MCF outbreaks had occurred. Binary logistic regression was used to classify DRB3 alleles as resistant (R), susceptible (S) or neutral (N). Animals were reclassified using six DRB3 genotype categories: N/N, N/R, N/S, R/S, R/R and S/S. Analysis of homogeneity across herds showed that there was a herd effect. Consequently, a penalized logistic regression model was run with herd and genotype categories as the explanatory variables. The R/R genotype was associated with resistance to MCF (P = 0.0327), while the S/S genotype was associated with clinical MCF (P = 0.0069). This is the first evidence that MHC class IIa polymorphism is associated with resistance or susceptibility to OvHV-2-induced MCF.  相似文献   

20.
Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2-4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号