首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the ciliated protozoan, Tetrahymena pyriformis, the mitochondrial large subunit ribosomal RNA (LSU rRNA) is discontinuous, consisting of two discrete RNA species: a 280-nucleotide LSU alpha (constituting the 5'-portion) and a 2315-nucleotide LSU beta (corresponding to the remaining 3'-portion of this rRNA). The T. pyriformis mitochondrial genome contains two copies of the LSU alpha.beta gene complex, and we have previously provided evidence that both copies are transcribed (Heinonen, T. Y. K., Schnare, M. N., Young, P. G., and Gray, M. W. (1987) J. Biol. Chem. 262, 2879-2887). We now report the complete sequences of the two copies of the LSU alpha.beta gene complex. These are not identical, but differ at 5 out of the 2595 positions by single nucleotide substitutions in one sequence relative to the other. In the secondary structure model we propose here, two of these differences are located in base-paired regions of the LSU rRNA; however, they do not interrupt the complementary interactions in these helices. The other three differences occur in single-stranded regions of the secondary structure. The base substitutions documented here are not localized to those regions of LSU rRNA that are the most highly conserved in global phylogenetic comparisons, and therefore it seems unlikely that they are of fundamental functional significance. Whether they might exert more subtle effects on ribosome function remains to be determined.  相似文献   

2.
We show here that in the mitochondria of Tetrahymena pyriformis, the small subunit (SSU) rRNA is discontinuous, being comprised of two separate components which we term "alpha" (a novel low molecular weight RNA, approximately equal to 200 nucleotides long) and "beta" (a previously described 14 S RNA). The SSU alpha rRNA has been sequenced in its entirety; it represents the immediate 5'-terminal domain of conventional SSU rRNA. The sequences at the ends of the SSU beta rRNA have also been determined; they show that this molecule corresponds to the 3'-terminal 7/8 of conventional SSU rRNA. A 2.5-kilobase pair XbaI restriction fragment of T. pyriformis mitochondrial DNA which contains the SSU alpha and SSU beta rRNA genes was cloned and its complete nucleotide sequence was determined. This revealed that the genes encoding the two segments of SSU rRNA are separated by a 54-base pair (A + T)-rich spacer. The alpha and beta sequences can be fitted to a generalized secondary structure model for eubacterial 16 S rRNA, with the two RNA species associating through long range interactions to form base-paired regions characteristic of SSU rRNA. In this model, the spacer is situated in a region of pronounced primary and secondary structural variation among SSU rRNAs. The significance of these findings with respect to rRNA biosynthesis and processing and the possible evolutionary relationship between spacers and variable regions in rRNA genes is discussed.  相似文献   

3.
4.
Tetrahymena thermophila mitochondrial DNA is a linear molecule with two tRNAs, large subunit beta (LSU beta) rRNA (21S rRNA) and LSU alpha rRNA (5.8S-like RNA) encoded near each terminus. The DNA sequence of approximately 550 bp of this region was determined in six species of Tetrahymena. In three species the LSU beta rRNA and tRNA(leu) genes were not present on one end of the DNA, demonstrating a mitochondrial genome organization different from that of T. thermophila. The DNA sequence of the LSU alpha rRNA was used to construct a mitochondrial phylogenetic tree, which was found to be topologically equivalent to a phylogenetic tree based on nuclear small subunit rRNA sequences (Sogin et al. (1986) EMBO J. 5, 3625-3630). The mitochondrial rRNA gene was found to accumulate base-pair substitutions considerably faster than the nuclear rRNA gene, the rate difference being similar to that observed for mammals.  相似文献   

5.
6.
Theileria parva, an intralymphocytic protozoan parasite of cattle, contains a linear 7.1 kb DNA element with terminal inverted repeat sequences. The molecule is transcribed into low molecular weight RNA, and both DNA strands encode short stretches of unique sequences, usually < 100 nucleotides, which are similar to large (LSU) or small (SSU) ribosomal subunit RNA. Phylogenetically conserved conformational rRNA domains were assembled from the discontinuous rDNA sequences using comparative secondary structure modelling. For example, a minimum of four predicted sequences, two derived from each DNA strand, is required to assemble domain V of LSU rRNA which participates in peptidyl transferase activity. The discontinuities in the identified rRNA domains fall within regions of no known functional significance. Hence, it is likely that the element encodes fragmented rDNA genes and the mature rRNA is unconventional, consisting of several fragments of RNA, primarily held together by intermolecular and intramolecular base pairing. The element also has ORFs for components of the last two mitochondrial electron transport enzyme complexes. The structure of the parasite DNA element, its protein coding capacity and scrambled rDNA gene sequences, are reminiscent of the mitochondrial genome of Chlamydomonas reinhardtii. We propose that the 7.1 kb element is equivalent to the mitochondrial DNA of T. parva, although a number of its features are unusual for this family of extrachromosomal DNA molecules.  相似文献   

7.
P H Boer  M W Gray 《Cell》1988,55(3):399-411
  相似文献   

8.
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas.  相似文献   

9.
10.
11.
J Trowsdale  A Kelly  J Lee  S Carson  P Austin  P Travers 《Cell》1984,38(1):241-249
Three overlapping cosmid clones contain coding sequences for four HLA Class II genes, provisionally identified as two HLA-SB alpha and two HLA-SB beta genes. The genes are in the order beta, alpha, beta, alpha, inverted with respect to each other. One of the SB beta genes contains a 513 bp sequence that appears to be a processed pseudogene, flanked by direct 17 bp repeat sequences, in the intron upstream of the beta 1 exon. The pseudogene is homologous to a family of sequences of approximately 25-40 members, most of which are not on chromosome 6. A cDNA clone, highly homologous to the pseudogene, except for its 5' end, contains a normal poly(A) addition site and a poly(A) tail. The cDNA clone is homologous to a single-copy gene in both man and mouse, encoded on human chromosome 15. A search of published DNA sequences identified a mouse sequence, with about 77% similarity to the pseudogene sequence, in the negative strand of an intron in a mouse dihydrofolate reductase gene. The second SB beta gene does not contain the pseudogene sequence.  相似文献   

12.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

13.
14.
The malaria parasite Plasmodium falciparum carries an extrachromosomal 35 kb circular DNA molecule of unknown provenance. A striking feature of the circle is a palindromic sequence of genes for subunit rRNAs and several tRNAs, spanning ca. 10.5 kb. The palindrome has an intriguing resemblance to the inverted repeat of plastid genomes, and the sequence and putative secondary structure of the malarial large subunit (LSU) rRNA described in this report were used as the basis of a phylogenetic study. The malarial rRNA was found to be highly divergent in comparison with a selected group of chloroplast LSU rRNAs but was more closely related to them than to mitochondrial LSU rRNA genes.  相似文献   

15.
16.
17.
18.
T T?nnesen 《Cytobiologie》1978,16(3):451-479
In the present communication a characterization of the 5 S rRNA genes and the tRNA genes of Tetrahymena pyriformis has been performed. The number of 5 S rRNA and tRNA genes in the macromolecular DNA has been established. Furthermore no sequence homology is observed for these genes. The number of both types of genes does not change significantly under starvation conditions. The genomic organization of the 5 S rRNA and tRNA genes has been investigated. From in vivo replication studies it is concluded, that replication of both 5 S rRNA and tRNA genes takes place throughout the whole S-period.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号