首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
Bhate M  Wang X  Baum J  Brodsky B 《Biochemistry》2002,41(20):6539-6547
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.  相似文献   

2.
Xiao J  Cheng H  Silva T  Baum J  Brodsky B 《Biochemistry》2011,50(50):10771-10780
Glycine is required as every third residue in the collagen triple helix, and a missense mutation leading to the replacement of even one Gly in the repeating (Gly-Xaa-Yaa)(n) sequence with a larger residue leads to a pathological condition. Gly to Ala missense mutations are highly underrepresented in osteogenesis imperfecta (OI) and other collagen diseases, suggesting that the smallest replacement residue, Ala, might cause the least structural perturbation and mildest clinical consequences. The relatively small number of Gly to Ala mutation sites that do lead to OI must have some unusual features, such as greater structural disruption because of local sequence environment or location at a biologically important site. Here, peptides are used to model a severe OI case in which a Gly to Ala mutation is found within a highly stabilizing Lys-Gly-Asp sequence environment. Nuclear magnetic resonance, circular dichroism, and differential scanning calorimetry studies indicate this Gly to Ala replacement leads to a substantial loss of triple-helix stability and nonequivalence of the Ala residues in the three chains such that only one of the three Ala residues is capable of forming a good backbone hydrogen bond. Examination of reported OI Gly to Ala mutations suggests their preferential location at known collagen binding sites, and we propose that structural defects caused by Ala replacements may lead to pathology when they interfere with interactions.  相似文献   

3.
Missense mutations in the collagen triple helix that replace one Gly residue in the (Gly-X-Y)(n) repeating pattern by a larger amino acid have been shown to delay triple helix folding. One hypothesis is that such mutations interfere with the C- to N-terminal directional propagation and that the identity of the residues immediately N-terminal to the mutation site may determine the delay time and the degree of clinical severity. Model peptides are designed to clarify the role of tripeptide sequences N-terminal to the mutation site, with respect to length, stability, and nucleation propensity, to complete triple helix folding. Two sets of peptides with different N-terminal sequences, one with the natural sequence alpha1(I) 886-900, which is just adjacent to the Gly(901) mutation, and one with a GPO(GAO)(3) sequence, which occurs at alpha1(I) 865-879, are studied by CD and NMR. Placement of the five tripeptides of the natural alpha1(I) collagen sequence N-terminal to the Gly to Ala mutation site results in a peptide that is folded only C-terminal to the mutation site. In contrast, the presence of the Hyp-rich sequence GPO(GAO)(3) N-terminal to the mutation allows complete refolding in the presence of the mutation. The completely folded peptide contains an ordered central region with unusual hydrogen bonding while maintaining standard triple helix structure at the N- and C-terminal ends. These peptide results suggest that the location and sequences of downstream regions favorable for renucleation could be the key factor in the completion of a triple helix N-terminal to a mutation.  相似文献   

4.
Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.  相似文献   

5.
The folding pathway of Rd-apocytochrome b562, a four-helix bundle protein, was characterized using Trp and Ala/Gly pair mutations. We found that the Trp mutants (F65W) of both the fully folded Rd-apocytochrome b562 and a partially unfolded intermediate with the N-terminal helix (helix I) unfolded, fold with identical folding rates, providing direct evidence for the conclusion that the rate-limiting transition state folds before the partially unfolded intermediate; and that this hidden intermediate is an on-pathway intermediate. We further characterized the helical structures formed in the rate-limiting transition state by measuring the folding/unfolding rates for Ala/Gly pair mutations at solvent-exposed positions. Little change in folding rates occurred for the Ala/Gly pair mutations at positions in helix I and the C-terminal regions of helix II and IV. In contrast, a significant difference in folding rates was observed for the Ala/Gly pair mutations in helix III and the N-terminal regions of helix II and IV, suggesting that helix III and the N-terminal regions of helix II and IV are formed in the rate-limiting transition state. These results complement those obtained from earlier studies and help to define the folding pathway of Rd-apocytochrome b562 in more detail.  相似文献   

6.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.  相似文献   

7.
The standard collagen triple helix requires Gly as every third residue in the amino acid sequence, yet all nonfibrillar collagens contain sites where this repeating pattern is interrupted. To explore the effects of such natural interruptions on the triple helix, a 4- or 15-residue sequence from human basement membrane type IV collagen was introduced between (Gly-Xaa-Yaa)(n) domains within a recombinant bacterial collagen. The interruptions had little effect on melting temperature, consistent with the high thermal stability reported for nonfibrillar collagens. Although the 4-residue interruption cannot be accommodated within a standard triple helix, trypsin and thermolysin resistance indicated a tightly packed structure. Central residues of the 15-residue interruption were protease-susceptible, whereas residues near the (Gly-Xaa-Yaa)(n) boundary were resistant, supporting a transition from an alternate conformation to a well packed triple helix. Both interruptions led to a delay in triple-helix folding, with the 15-residue interruption causing slower folding than the 4-residue interruption. These results suggest that propagation through interruptions represents a slow folding step. To clarify the relation between natural interruptions and pathological mutations, a Gly to Ser missense mutation was placed three triplets away from the 4-residue interruption. As a result of this mutation, the 4-residue interruption and nearby triple helix became susceptible to protease digestion, and an additional folding delay was observed. Because Gly missense mutations that cause disease are often located near natural interruptions, structural and folding perturbations arising from such proximity could be a factor in collagen genetic diseases.  相似文献   

8.
Buevich AV  Dai QH  Liu X  Brodsky B  Baum J 《Biochemistry》2000,39(15):4299-4308
Understanding the folding of the proline-rich collagen triple helix requires consideration of the effects of proline cis-trans isomerization and may shed light on the misfolding of collagen in connective tissue diseases. Folding was monitored in real time by heteronuclear 2D NMR spectroscopy for the (15)N labeled positions in the triple-helical peptide T1-892 [GPAGPAGPVGPAGARGPAGPOGPOGPOGPOGV]. In the equilibrium unfolded monomer form, each labeled residue showed multiple peaks with interconversion rates consistent with cis-trans isomerization of Gly-Pro and Pro-Hyp bonds. Real-time NMR studies on the folding of T1-892 showed slow decay of monomer peaks and a concomitant increase in trimer peaks. Gly25 in the C-terminal rich (Gly-Pro-Hyp)(4) domain folds first, consistent with its being a nucleation domain. Analysis of the kinetics indicates that the folding of Gly25 is biphasic and the slower step represents cis-trans isomerization of imino acids. This illustrates that nucleation is limited by cis-trans isomerization. Monitoring Gly6, Gly10, Ala12, and Gly13 monomer and trimer peaks captures the C- to N-terminal propagation of the triple helix, which is also limited by Gly-Pro cis-trans isomerization events. The zipper-like nature of the propagation process is confirmed by the slower rate of folding of Ala6 compared to Gly13, reflecting the larger number of isomerization events encountered by the more N-terminal Ala6. The cis-trans isomerization events at multiple proline residues is a complex statistical process which can be visualized by these NMR studies.  相似文献   

9.
Close packing of three chains in a standard collagen triple helix requires Gly as every third residue. Missense mutations replacing one Gly by a larger residue in the tripeptide repeating sequence in type I collagen are common molecular causes of osteogenesis imperfecta. The structural and dynamic consequences of such mutations are addressed here by NMR studies on a peptide with a Gly-to-Ser substitution within an α1(I) sequence. Distances derived from nuclear Overhauser effects indicate that the three Ser residues are still packed in the center of the triple helix and that the standard 1-residue stagger is maintained. NMR dynamics using H-exchange and temperature-dependent amide chemical shifts indicate a greater disruption of hydrogen bonding and/or increased conformational flexibility C-terminal to the Ser site when compared with N terminal. This is consistent with recent suggestions relating clinical severity with an asymmetric effect of residues N- versus C-terminal to a mutation site. Dynamic studies also indicate that the relative position between a Gly in one chain and the mutation site in a neighboring staggered chain influences the disruption of the standard hydrogen-bonding pattern. The structural and dynamic alterations reported here may play a role in the etiology of osteogenesis imperfecta by affecting collagen secretion or interactions with other matrix molecules.Mutations in collagen result in a variety of connective tissue diseases (1, 2), with the clinical phenotype depending on the location and function of the collagen type. For instance, mutations in type I collagen, the major collagen in bone, lead to a bone disorder, osteogenesis imperfecta (OI),3 whereas mutations in type III collagen, which is present in high amounts in blood vessels, lead to aortic rupture in Ehlers-Danlos syndrome type IV (1, 2). All collagens have a triple helix motif composed of three polyproline II-like chains that are staggered by 1 residue and supercoiled about a common axis. The smallest residue Gly is typically present as every 3rd residue in each chain because of the tight packing of the chains, which generates the characteristic (Gly-Xaa-Yaa)n repeating sequence. The Gly residues are all buried in the center, and the structure is stabilized by interchain N–H (Gly) … CO (Xaa) hydrogen bonds (35). The most common type of mutation leading to collagen disorders is a missense mutation that replaces 1 Gly in the repeating sequence by a larger residue.The best characterized collagen disease is OI, or brittle bone disease, which is distinguished by fragile bones due to mutations in type I collagen (2, 6). More than 400 Gly substitution missense mutations in the α1(I) and α2(I) chains of type I collagen have been reported to lead to OI (7). The severity of the disease varies widely from mild cases with multiple fractures to perinatal lethal cases (2, 6, 7). A single base change in a Gly codon can lead to one of 8 residues (Ser, Ala, Cys, Val, Arg, Asp, Glu, Trp) or a missense mutation. The smallest residue Ala is underrepresented in OI, suggesting that it may not always lead to pathology, whereas Ser mutations are overrepresented, corresponding to the most common substitutions observed. The 152 mutations leading to a Gly to Ser substitution account for ∼39% of all missense mutations in the α1(I) of type I collagen (7), with 115 associated with mild phenotypes and 37 associated with lethal phenotypes.The identity of the residue replacing Gly may be a determinant in the clinical severity of OI. Model peptide studies indicate that the degree of triple helix destabilization depends on the residue replacing Gly, with a ranking of the least destabilizing to the most destabilizing Ala,Ser8). There is some correlation between clinical severity of OI cases and this destabilization scale, with the strongly destabilizing residues Val, Arg, Asp, and Glu associated largely with lethal phenotypes (8). However, as cited above, a Gly to Ser mutation can lead to a mild, a severe, or a lethal OI case, with no obvious molecular explanation. Other factors suggested to contribute to clinical phenotype include the rigidity of its immediate sequence environment; its location with respect to the C terminus; its proximity to salt bridges; and its presence at an interaction site, such as the binding site for proteoglycans on collagen fibrils (7, 9). A recent study of the stability of OI collagens supported the importance of the domain location of the mutation (10), whereas a network analysis of the mutations suggested the importance of a destabilizing tripeptide sequence C-terminal to the mutation site (11).The standard triple helix conformation must undergo some structural perturbation as a result of a Gly replacement that is likely to relate to the development of the disorder. Thus it is important to define the structural consequences of a Gly substitution. It has not proved possible to obtain molecular information for the long collagen molecules themselves, but model collagen peptides have proved amenable to x-ray crystallography and NMR techniques (12, 13). The structure of a peptide containing a Gly to Ala substitution near the center of the peptide (Pro-Hyp-Gly)10 has been solved by x-ray crystallography (5). This structure shows an overall straight molecule with standard triple helical structures at both ends and a localized conformational deformation at the Ala replacement site. The direct N–H (Gly) … CO (Xaa) hydrogen bond is replaced by a water-mediated hydrogen bond N–H (Ala) … H2O … CO (Xaa).Here, NMR spectroscopy is used to define the structural and dynamic effect of a Gly to Ser replacement through the application of recently developed NMR methodology on selectively 13C/15N doubly labeled collagen peptides (14). This strategy includes chain assignments, measurement of NOEs, and scalar J-couplings to define the conformation of the peptide. These results combined with NMR hydrogen exchange experiments and temperature-dependent chemical shift data demonstrate the disturbed dynamic features and hydrogen bonding around the Ser substitution site. The NMR data of the Gly to Ser peptide are compared with the NMR and x-ray high resolution structure of the peptide containing a Gly to Ala substitution (5).  相似文献   

10.
Mohs A  Li Y  Doss-Pepe E  Baum J  Brodsky B 《Biochemistry》2005,44(6):1793-1799
Missense mutations in the collagen triple-helix that replace one of the required Gly residues in the (Gly-Xaa-Yaa)(n)() repeating sequence have been implicated in various disorders. Although most hereditary collagen disorders are rare, a common occurrence of a Gly replacement mutation is found in the collagenous domain of mannose binding lectin (MBL). A Gly --> Asp mutation at position 54 in MBL is found at a frequency as high as 30% in certain populations and leads to increased susceptibility to infections. The structural and energetic consequences of this mutation are investigated by comparing a triple-helical peptide containing the N-terminal Gly-X-Y units of MBL with the homologous peptide containing the Gly to Asp replacement. The mutation leads to a loss of triple-helix content but only a small decrease in the stability of the triple-helix (DeltaT(m) approximately 2 degrees C) and no change in the calorimetric enthalpy. NMR studies on specifically labeled residues indicate the portion of the peptide C-terminal to residue 54 is in a highly ordered triple-helix in both peptides, while residues N-terminal to the mutation site have a weak triple-helical signal in the parent peptide and are completely disordered in the mutant peptide. These results suggest that the N-terminal triplet residues are contributing little to the stability of this peptide, a hypothesis confirmed by the stability and enthalpy of shorter peptides containing only the region C-terminal to the mutation site. The Gly to Asp replacement at position 54 in MBL occurs at the boundary of a highly stable triple-helix region and a very unstable sequence. The junctional position of this mutation minimizes its destabilizing effect, in contrast with the significant destabilization seen for Gly replacements in peptides modeling collagen diseases.  相似文献   

11.
Negative factor (Nef) is a regulatory myristoylated protein of human immunodeficiency virus (HIV) that has a two-domain structure consisting of an anchor domain and a core domain separated by a specific cleavage site of the HIV proteases. For structural analysis, the HIV-1 Nef anchor domain (residues 2-57) was synthesized with a myristoylated and non-myristoylated N terminus. The structures of the two peptides were studied by1H NMR spectroscopy and a structural model was obtained by restrained molecular dynamic simulations. The non-myristoylated peptide does not have a unique, compactly folded structure but occurs in a relatively extended conformation. The only rather well-defined canonical secondary structure element is a short two-turn alpha-helix (H2) between Arg35 and Gly41. A tendency for another helical secondary structure element (H1) can be observed for the arginine-rich region (Arg17 to Arg22). Myristoylation of the N-terminal glycine residue leads to stabilization of both helices, H1 and H2. The first helix in the arginine-rich region is stabilized by the myristoylation and now contains residues Pro14 to Arg22. The second helix appears to be better defined and to contain more residues (Ala33 to Gly41) than in the absence of myristoylation. In addition, the hydrophobic N-terminal myristic acid residue interacts closely with the side-chain of Trp5 and thereby forms a loop with Gly2, Gly3 and Lys4 in the kink region. This interaction could possibly be disturbed by phosphorylation of a nearby serine residue, and modifiy the characteristic membrane interactions of the HIV-1 Nef anchor domain.  相似文献   

12.
Yao H  Stuart RA  Cai S  Sem DS 《Biochemistry》2008,47(7):1910-1917
F1Fo-ATP synthase is a large multiprotein complex, including at least 10 subunits in the membrane-bound Fo-sector. One of these Fo proteins is subunit e (Su e), involved in the stable dimerization of F1Fo-ATP synthase, and required for the establishment of normal cristae membrane architecture. As a step toward enabling structure-function studies of the Fo-sector, the Su e transmembrane region was structurally characterized in micelles. Based on a series of NMR and CD (circular dichroism) studies, a structural model of the Su e/micelle complex was constructed, indicating Su e is largely helical, and emerges from the micelle with Arg20 near the phosphate head groups. Su e only adopts this folded conformation in the context of the micelle, and is essentially disordered in DMSO, water or trifluoroethanol/water. Within the micelle the C-terminal Ala10-Arg20 stretch is helical, while the region N-terminal may be transiently helical, based on negative CSI (chemical shift index) values. The Ala10-Arg20 helix contains the G14XXXG18 motif, which has been proposed to play an important role in dimer formation with another protein from the Fo-sector. The Gly on the C-terminal end of this motif (Gly18) is slightly more mobile than the more buried Gly14, based on NMR order parameter measurements (Gly14 S2 = 0.950; Gly18 S2 = 0.895). Only one Su e transmembrane peptide is bound per micelle, and micelles are 22-23 A in diameter, composed of 51 +/- 4 dodecylphosphocholine detergent molecules. Although there is no evidence for Su e homodimerization via the transmembrane domain, potentially synergistic roles for N-terminal (membrane) and C-terminal (soluble) domain interactions may still occur. Furthermore, the presence of a buried charged residue (Arg7) suggests there may be interactions with other Fo-sector protein(s) that stabilize this charge, and possibly drive the folding of the N-terminal 9 residues of the transmembrane domain.  相似文献   

13.
Xu Y  Bhate M  Brodsky B 《Biochemistry》2002,41(25):8143-8151
Peptide T1-892 is a triple-helical peptide designed to include two distinct domains: a C-terminal (Gly-Pro-Hyp)(4) sequence, together with an N-terminal 18-residue sequence from the alpha1(I) chain of type I collagen. Folding experiments of T1-892 using CD spectroscopy were carried out at varying concentrations and temperatures, and fitting of kinetic models to the data was used to obtain information about the folding mechanism and to derive rate constants. Proposed models include a heterogeneous population of monomers with respect to cis-trans isomerization and a third-order folding reaction from competent monomer to the triple helix. Fitting results support a nucleation domain composed of all or most of the (Gly-Pro-Hyp)(4) sequence, which must be in trans form before the monomer is competent to initiate triple-helix formation. The folding of competent monomer to a triple helix is best described by an all-or-none third-order reaction. The temperature dependence of the third-order rate constant indicates a negative activation energy and provides information about the thermodynamics of the trimerization step. These CD studies complement NMR studies carried out on the same peptide at high concentrations, illustrating how the rate-limiting folding step is affected by changes in concentration. This sequence preference of repeating Gly-Pro-Hyp units for the initiation of triple-helix formation in peptide T1-892 may be related to features in the triple-helix folding of collagens.  相似文献   

14.
Xu Y  Hyde T  Wang X  Bhate M  Brodsky B  Baum J 《Biochemistry》2003,42(29):8696-8703
Protein folding is determined by molecular features in the unfolded state, as well as the native folded structure. In the unfolded state, imino acids both restrict conformational space and present cis-trans isomerization barriers to folding. Because of its high proline and hydroxyproline content, the collagen triple-helix offers an opportunity to characterize the impact of imino acids on the unfolded state and folding kinetics. Here, NMR and CD spectroscopy are used to characterize the role of imino acids in a triple-helical peptide, T1-892, which contains an 18-residue sequence from type I collagen and a C-terminal (Gly-Pro-Hyp)(4) domain. The replacement of Pro or Hyp by an Ala in the (Gly-Pro-Hyp)(4) region significantly decreases the folding rate at low but not high concentrations, consistent with less efficient nucleation. To understand the molecular basis of the decreased folding rate, changes in the unfolded as well as the folded states of the peptides were characterized. While the trimer states of the peptides are all similar, NMR dynamics studies show monomers with all trans (Gly-Pro-Hyp)(4) are less flexible than monomers containing Pro --> Ala or Hyp --> Ala substitutions. Nucleation requires all trans bonds in the (Gly-Pro-Hyp)(4) domain and the constrained monomer state of the all trans nucleation domain in T1-892 increases its competency to initiate triple-helix formation and illustrates the impact of the unfolded state on folding kinetics.  相似文献   

15.
Bodian DL  Madhan B  Brodsky B  Klein TE 《Biochemistry》2008,47(19):5424-5432
Osteogenesis imperfecta (OI), or brittle bone disease, often results from missense mutation of one of the conserved glycine residues present in the repeating Gly-X-Y sequence characterizing the triple-helical region of type I collagen. A composite model was developed for predicting the clinical lethality resulting from glycine mutations in the alpha1 chain of type I collagen. The lethality of mutations in which bulky amino acids are substituted for glycine is predicted by their position relative to the N-terminal end of the triple helix. The effect of a Gly --> Ser mutation is modeled by the relative thermostability of the Gly-X-Y triplet on the carboxy side of the triplet containing the substitution. This model also predicts the lethality of Gly --> Ser and Gly --> Cys mutations in the alpha2 chain of type I collagen. The model was validated with an independent test set of six novel Gly --> Ser mutations. The hypothesis derived from the model of an asymmetric interaction between a Gly --> Ser mutation and its neighboring residues was tested experimentally using collagen-like peptides. Consistent with the prediction, a significant decrease in stability, calorimetric enthalpy, and folding time was observed for a peptide with a low-stability triplet C-terminal to the mutation compared to a similar peptide with the low-stability triplet on the N-terminal side. The computational and experimental results together relate the position-specific effects of Gly --> Ser mutations to the local structural stability of collagen and lend insight into the etiology of OI.  相似文献   

16.
To collect folding information, we screened and analyzed the recombinant hen lysozyme mutants which were not secreted from yeast. As model mutants, Leu8Arg, Ala10Gly, and Met12Arg were prepared by site-directed mutagenesis and analyzed as to whether they were secreted from yeast or not. Consequently, Ala10Gly was found to be secreted from yeast, but Leu8Arg and Met12Arg were not. Next, these mutants were expressed in Escherichia coli and refolded in vitro. As a result, Ala10Gly folded as the wild-type did. Leu8Arg efficiently refolded in renaturation buffer containing glycerol. Met12Arg did not refold even in the presence of glycerol. These results show that the Ala10Gly mutation does not affect folding or stability, that Leu8Arg is too unstable to be secreted from yeast, and that Met12Arg may be very unstable or the mutation affects the folding pathway. We screened the mutants that were not secreted by yeast from a randomly mutated lysozyme library, and obtained Asp18His/Leu25Arg and Ala42Val/Ser50Ile/Leu56Gln. These two mutants were expressed in E. coli and then refolded in the presence of urea or glycerol. These mutants were refolded only in the presence of glycerol. Each single mutant of Asp18His/Leu25Arg and Ala42Val/Ser50Ile/Leu56Gln was independently prepared and folded in vitro. The results showed that Leu25Arg and Leu56Gln were the dominant mutations, respectively, which cause destabilization. These results show that the mutant lysozymes which were not secreted from yeast may be unstable or have a defect in the folding pathway. Thus, we established a screening system for selecting mutants which are unable to form a stable structure from random mutants.  相似文献   

17.
Even a single Gly substitution in the triple helix domain of collagen leads to pathological conditions while natural interruptions are suggested to play important functional roles. Two peptides—one mimicking a pathological Gly–Ser substitution (ERSEQ) and the other one modeling a similar natural interruption sequence (DRSER)—are designed to facilitate the comparison for elucidating the molecular basis of their different biological roles. CD and NMR investigation of peptide ERSEQ indicates a reduction of the thermal stability and disruption of hydrogen bonding at the Ser mutation site, providing a structural basis of the OI disease resulting from the Gly–Ser mutation in the highly charged RGE environment. Both CD and NMR real‐time folding results indicate that peptide ERSEQ displays a comparatively slower folding rate than peptide DRSER, suggesting that the Gly–Ser mutation may lead to a larger interference in folding than the natural interruption in a similar RSE context. Our studies suggest that unlike the rigid GPO environment, the abundant R(K)GE(D) motif may provide a more flexible sequence environment that better accommodates mutations as well as interruptions, while the electrostatic interactions contribute to its stability. These results shed insight into the molecular features of the highly charged motif and may aid the design of collagen biomimetic peptides containing important biological sites.  相似文献   

18.
The structure of the N-terminal domain of enzyme I complexed with histidine-containing protein (HPr) has been described by multi-dimensional NMR. Residues in HPr involved in binding were identified by intermolecular nuclear Overhauser effects (Garrett et al. 1999). Most of these residues have been mutated, and the effect of these changes on binding has been assessed by enzyme I kinetic measurement. Changes to Thr16, Arg17, Lys24, Lys27, Ser46, Leu47, Lys49, Gln51, and Thr56 result in increases to the HPr Km of enzyme I, which would be compatible with changes in binding. Except for mutations to His15 and Arg17, very little or no change in Vmax was found. Alanine replacements for Gln21, Thr52, and Leu55 have no effect. The mutation Lys40Ala also affects HPr Km of enzyme I; residue 40 is contiguous with the enzyme I binding site in HPr and was not identified by NMR. The mutations leading to a reduction in the size of the side chain (Thr16Ala, Arg17Gly, Lys24Ala, Lys27Ala, and Lys49Gly) caused relatively large increases in Km (>5-fold) indicating these residues have more significant roles in binding to enzyme I. Acidic replacement at Ser46 caused very large increases (>100-fold), while Gln51Glu gave a 3-fold increase in Km. While these results essentially concur with the identification of residues by the NMR experiments, the apparent importance of individual residues as determined by mutation and kinetic measurement does not necessarily correspond with the number of contacts derived from observed intermolecular nuclear Overhauser effects.  相似文献   

19.
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.  相似文献   

20.
B8Gly is absolutely conserved in insulin from different species, and in other members of the insulin superfamily the corresponding position is always occupied by a Gly residue. However, the reasons for its conservation are still unclear; probably many factors contribute to this phenomenon. In our previous work, B8Gly was replaced by an Ala residue, which suggested that biological activity is one of the factors contributing to its conservation. In order to identify more factors contributing to this positional conservation, the secretion efficiency, structural stability, disulfide stability, and in vitro refolding of single-chain insulin (PIP) and a mutant with B8Gly replaced by Ala, were investigated. Compared with wild-type PIP, the B8Ala replacement decreased the secretion efficiency, structural stability, disulfide stability, and in vitro refolding efficiency of the PIP sequence. These results suggest that B8Gly is important to the secretion, folding, and stability of the insulin sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号