首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The elastic tendon of the avian wing has been described by others as a unique structure with elastic properties due to the predominance of elastic fibers in the midsubstance. Further analyses of the tendon have shown it to possess five anatomically distinct regions. Besides the major elastic region, a distally located fibrocartilage and three tendinous regions are present. The tendinous regions connect: (1) the muscle to the elastic region, (2) the elastic region to the fibrocartilage and (3) the latter to the insertion site. The elastic region possesses thick and abundant elastic fibers and very thin, interconnecting collagen fibers. The collagen fibers in the sesamoid fibrocartilage are thick and interwoven, defining spaces occupied by fibrochondrocytes embedded in a non-fibrillar and highly metachromatic matrix. Biochemical analyses have shown that the fibrocartilage has about tenfold the amount of glycosaminoglycans (GAGs) found in the other regions. The main GAG in this region was chondroitin sulfate (CS) (plus keratan sulfate as detected immunocytochemically), while the other regions showed variable amounts of CS, dermatan sulfate (DS) and heparan sulfate. Further analyses have shown that a large CS-bearing proteoglycan is found in the fibrocartilage. The elastic region possesses two main proteoglycans, a large CS-bearing proteoglycan (which reacted with an antibody against keratan sulfate after chondroitinase ABC treatment) and a predominant DS-bearing proteoglycan, which showed immunoreactivity when assayed with an anti-biglycan antibody. The results demonstrate that the elastic tendon is a complex structure with complex regional structural and compositional adaptations, suited to different biomechanical roles.  相似文献   

2.
Tendons in different locations function in unique, and at times complex, invivo loading environments. Specifically, some tendons are subjected to compression, shear and/or torsion in addition to tensile loading, which play an important role in regulating tendon properties. To date, there have been few studies evaluating tendon mechanics when loaded in compression and shear, which are particularly relevant for understanding tendon regions that experience such non-tensile loading during normal physiologic function. The objective of this study was to evaluate mechanical responses of different regions of bovine deep digital flexor tendons (DDFT) under compressive and shear loading, and correlate structural characteristics to functional mechanical properties. Distal and proximal regions of DDFT were evaluated in a custom-made loading system via three-step incremental stress-relaxation tests. A two-relaxation-time solid linear model was used to describe the viscoelastic response. Results showed large differences in the elastic behavior between regions: distal region stresses were 4–5 times larger than proximal region stresses during compression and 2–3 times larger during shear. Surprisingly, the viscous (i.e., relaxation) behavior was not different between regions for either compression or shear. Histological analysis showed that collagen and proteoglycan in the distal region distributed differently from the proximal region. Results demonstrate mechanical differences between two regions of DDFT under compression and shear loading, which are attributed to variations of composition and microstructural organization. These findings deepen our understanding of structure–function relationships of tendon, particularly for tissues adapted to supporting combinations of tension, compression, and shear in physiological loading environments.  相似文献   

3.
In order to facilitate locomotion and limb movement many animals store energy elastically in their tendons. In the turkey, much of the force generated by the gastrocnemius muscle is stored as elastic energy during tendon deformation and not within the muscle. As limbs move, the tendons are strained causing the collagen fibers in the extracellular matrices to be strained. During growth, avian tendons mineralize in the portions distal to the muscle and show increased tensile strength, modulus, and energy stored per unit strain as a result. In this study the energy stored in unmineralized and mineralized collagen fibers was measured and compared to the amount of energy stored in molecular models. Elastic energy storage values calculated using the molecular model were slightly higher than those obtained from collagen fibers, but display the same increases in slope as the fiber data. We hypothesize that these increases in slope are due to a change from the stretching of flexible regions of the collagen molecule to the stretching of less flexible regions. The elastic modulus obtained from the unmineralized molecular model correlates well with elastic moduli of unmineralized collagen from other studies. This study demonstrates the potential importance of molecular modeling in the design of new biomaterials.  相似文献   

4.
The leg tendons of certain avian species normally calcify. The gastrocnemius, or Achilles, tendon of the domestic turkey, Meleagris gallopavo, is one such example. Its structure and biomechanical properties have been studied to model the adaptive nature of this tendon to external forces, including the means by which mineral deposition occurs and the functional role mineralization may play in this tissue. Structurally, the distal rounded, thick gastrocnemius bifurcates into two smaller proximal segments that mineralize with time. Mineral deposition occurs at or near the bifurcation, proceeding in a distal-to-proximal direction along the segments toward caudal and medial muscle insertions of the bird hip. Mineral formation appears mediated first by extracellular matrix vesicles and later by type I collagen fibrils. Biomechanical analyses indicate lower tensile strength and moduli for the thick distal gastrocnemius compared to narrow, fan-shaped proximal segments. Tendon mineralization here appears to be strain-induced, the muscle forces causing matrix deformation leading conceptually to calcium binding through the exposure of charged groups on collagen, release of sequestered calcium by proteoglycans, and increased diffusion. Functionally, the mineralized tendons limit further tendon deformation, reduce tendon strain at a given stress, and provide greater load-bearing capacity to the tissue. They also serve as important and efficient elastic energy storage reservoirs, increasing the amount of stored elastic energy by preventing flexible type I collagen regions from stretching and preserving muscle energy during locomotion of the animals.  相似文献   

5.
C S Enwemeka 《Tissue & cell》1991,23(2):173-190
The ultrastructures of 33 rabbit calcaneal tendons were studied to determine (1) whether vacuolar fibrils are present in three regions of tendons undergoing normal healing after tenotomy and repair, and (2) to stimulate collagen synthesis via functional loading, and hence determine the effect of loading on the presence of vacuolar fibrils in healing tendons. In all the loaded tendons, electron microscopy revealed membrane-bound collagen fibril equivalents in sections of neotendon obtained from the site of tenotomy, and in sections of tendon segments proximal and distal to the site of surgery. Similar vacuolar fibrils were visualized in sections of the proximal and distal segments of the non-loaded regenerating tendons, and also in sections of neotendons formed at the site of tenotomy after 12 and 15 days of healing without functional loading. No such fibrils were visualized in the non-tenotomized normal control tendons. These findings indicate that chemical agents and disease are not necessary to induce the appearance of intracytoplasmic fibrils in vivo and that functional loading augments the presence of fibril-bearing vacuoles in regenerating tendons.  相似文献   

6.
The role of tenascin-C in adaptation of tendons to compressive loading   总被引:3,自引:0,他引:3  
Although most tendon regions are subjected primarily to high tensile loads, selected regions, primarily those that directly contact bones that change the direction of the tendon, must withstand high compressive loads as well. Compressed tendon regions differ from regions subjected to primarily tensile loads: they have a fibrocartilaginous structure with spherical cells surrounded by a matrix containing aggrecan and collagen types I and II, in contrast regions not exposed to compression have a fibrous structure with spindle shaped fibroblasts surrounded by a matrix of dense, longitudinally oriented type I collagen fibrils. The spherical shape of cells in fibrocartilagenous regions indicates these cells are more loosely attached to the matrix than their spindle-shaped counterparts in fibrous regions, a feature that may help to minimize cell deformation during tendon compression. We hypothesized that expression of tenascin-C, an anti-adhesive protein, is part of the adaptation of tendon cells to compression that helps establish and maintain fibrocartilaginous regions. To test this hypothesis we compared tenascin-C content and expression in compressed (distal) versus uncompressed (proximal) segments of bovine flexor tendons. Immunohistochemistry and immunoblot analyses showed that tenascin-C content was increased in the distal tendon where it co-distributed with type II collagen and aggrecan. Tendon cells from the distal segments expressed more tenascin-C than did cells from the proximal segments for up to four days in cell culture, indicating that increased tenascin-C expression is a relatively stable feature of the distal cells. These observations support the hypothesis that tenascin-C expression is a cellular adaptation to compression that helps establish and maintain fibrocartilagenous regions of tendons.  相似文献   

7.
Flexor tendons function as energy storage and shock absorption structures in the tarsometatarso‐phalangeal joint (TMTPJ) of ostrich feet during high‐speed and heavy‐load locomotion. In this study, mechanisms underlying the energy storage and shock absorption of three flexor tendons of the third toe were studied using histology and scanning electron microscopy (SEM). Macroscopic and microscopic structures of the flexor tendons in different positions of TMTPJ were analyzed. Histological slices showed collagen fiber bundles of all flexor tendons in the middle TMTPJ were arranged in a linear‐type, but in the proximal and distal TMTPJ, a wavy‐type arrangement was found in the tendon of the M. flexor digitorum longus and tendon of the M. flexor perforans et perforatus digiti III, while no regular‐type was found in the tendon of the M. flexor perforatus digiti III. SEM showed that the collagen fiber bundles of flexor tendons were arranged in a hierarchically staggered way (horizontally linear‐type and vertically linear‐type). Linear‐type and wavy‐type both existed in the proximal TMTPJ for the collagen fiber bundles of the tendon of the M. flexor perforatus digiti III, but only the linear‐type was found in the distal TMTPJ. A number of fibrils were distributed among the collagen fiber bundles, which were likely effective in connection, force transmission and other functions. The morphology and arrangement of collagen fiber bundles were closely related to the tendon functions. We present interpretations of the biological functions in different positions and types of the tendons in the TMTPJ of the ostrich feet.  相似文献   

8.
The present study examined the hypothesis that collagen fibril diameter and crimp angle in ruptured human Achilles tendons differed from that of intact ones. Tissue samples were obtained from the central core (distal core) and the posterior periphery (distal superficial) at the rupture site, and the proximally intact (proximal superficial) part of the tendon in 10 subjects (38+/-8 years) with a complete tendon rupture. For comparisons corresponding tissue samples were procured from age (38+/-7 years) and gender matched intact Achilles tendons during routine forensic autopsy. The cross-sectional area density and diameter distribution of fibrils were analyzed using stereological techniques of digitized electron microscopy biopsy cross-sections, while crimp angle was measured by the changing banding pattern of collagen fibers when rotated between crossed polars. Nine of 10 persons with tendon ruptures reported that the injury did not occur during exceedingly large forces, and none experienced any symptoms in the days or months prior to the injury. Fibril diameter distribution showed no region-specific differences in either the ruptured or intact tendons for either group. However, in the distal core there were fewer fibrils in the ruptured compared to the intact tendons in 60-150 nm range, P<0.01. Similarly, in the distal superficial portion there were fewer fibrils in the ruptured compared to the intact tendons in the 90-120 nm range, 2P<0.05, while there were no differences in the proximal superficial tendons. Crimp angle did not display any region-specific differences, or any difference between the rupture and intact tendons. In conclusion, these data suggest that although crimp morphology is unchanged there appears to be a site-specific loss of larger fibrils in the core and periphery of the Achilles tendon rupture site. Moreover, the lack of symptoms prior to the rupture suggests that clinical tendinopathy is not an etiological factor in complete tendon ruptures.  相似文献   

9.
Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.  相似文献   

10.
Analysis of cumulative strain in tendons and tendon sheaths   总被引:4,自引:1,他引:3  
Twenty-five fresh frozen flexor digitorum profundus tendons stratified by sex were subjected to uniaxial step stress and cyclic loads in twelve intact human cadaver hands. By attaching specially designed clip strain gage transducers on tendons just proximal and distal to an undisrupted carpal tunnel, the interactions of the tendons, tendon sheath and retinacula were measured. The elastic and viscous response of the tendon composites to step stresses were found to fit fractional power functions of stress and time respectively. A significant and quantifiable decrease in strain from the proximal to the distal tendon segment was found to be a function of wrist deviation. The results indicate that an accumulation of strain does occur in tendinous tissues during physiologic loading.  相似文献   

11.
Fibroblast cultures were initiated from two distinct regions of the adult bovine deep flexor tendon and synthesis of 35S-labeled proteoglycans by these cultures was investigated. The proximal/tensional region of the tendon was composed of linearly arranged dense collagen bundles, and its glycosaminoglycan hexosamine content was only 0.2% of the dry weight of the tissue. The proteoglycans of this region were predominantly small (Kav = 0.5 on Sepharose CL-4B). Cells placed into culture from this region attached to the substratum readily, and the radiolabeled proteoglycans from these cultures were 90% small proteoglycans. In a more distal region of the tendon that is subjected to compressive forces, the collagen was arranged as a network of fibrils separated from each other by a matrix that stained intensely with Alcian blue. The glycosaminoglycan content of this compressed region was up to 5-fold higher than in the proximal region, and as much as 50% of the proteoglycans were large molecules (eluted from Sepharose CL-4B in the Vo). Cells placed into culture from the distal/compressed region did not attach to the substratum as readily as those from the proximal region and were characterized by the presence of numerous cytoplasmic lipid inclusions. The [35S]proteoglycans synthesized by the distal tendon fibroblast cultures were divided into two approximately equal populations of large and small proteoglycans having elution characteristics similar to the proteoglycans extracted from this tissue. The distinct profiles of proteoglycan production were maintained by the cells in culture for several weeks, although eventually the amount of large proteoglycan synthesized by the distal tendon fibroblast cultures diminished. Both regions of tendon contained predominantly type I collagen, and collagen production was about 10% of the total protein synthesized by both cell cultures. These observations indicate that adult tendon fibroblasts in culture express stable synthesis of proteoglycan populations similar to those found in the region of tendon from which they were derived.  相似文献   

12.
The mechanical properties of 3, 15 and 25 month-old rat tail tendons were investigated in relation to proximal-distal sampling location along the fibre length. For the 15 and 25 month-old tendons maximum load as well as collagen content per mm fibre length (unit collagen) increased markedly from the proximal to the distal location. A linear regression analysis of the collagen content and mechanical parameters (maximum load, maximum slope of the load-strain curve and energy absorption) showed that these parameters were linearly correlated to the collagen content. However, normalization of the mechanical parameters with regard to the collagen content did not cancel the dependency of the parameters on proximal-distal sampling location. Normalized load and energy values for the 3 month-old tendons and normalized slope values for the 15 and 25 month-old tendons were found to decrease from proximal to distal location. These findings showed that tail tendons are heterogeneous along their length in respect to mechanical strength. The regression analysis also indicated the existence of an inverse relationship between unit collagen and mechanical quality of the collagen. Alternatively, the mechanical properties of tendon fibres might be influenced by other components than collagen.  相似文献   

13.
The linear organization of collagen fibers in tendons results in optimal stiffness and strength at low strains under tensile load. However, this organization makes repairing ruptured or lacerated tendons extremely difficult. Current suturing techniques to join split ends of tendons, while providing sufficient mechanical strength to prevent gapping, are inadequate to carry normal loads. Immobilization protocols necessary to restore tendon congruity result in scar formation at the repair site and peripheral adhesions that limit excursion. These problems are reviewed to emphasize the need for novel approaches to tendon repair, one of which is the development of biomimetic tendons. The objective of the empirical work described here was to produce biologically-based, biocompatible tendon replacements with appropriate mechanical properties to enable immediate mobilization following surgical repair. Nor-dihydroguaiaretic acid (NDGA), a di-catechol from creosote bush, caused a dose dependent increase in the material properties of reconstituted collagen fibers, achieving a 100-fold increase in strength and stiffness over untreated fibers. The maximum tensile strength of the optimized NDGA treated fibers averaged 90 MPa; the elastic modulus of these fibers averaged 580 MPa. These properties were independent of strain rates ranging from 0.60 to 600 mm/min. Fatigue tests established that neither strength nor stiffness were affected after 80 k cycles at 5% strain. Treated fibers were not cytotoxic to tendon fibroblasts. Fibroblasts attached and proliferated on NDGA treated collagen normally. NDGA-fibers did not elicit a foreign body response nor did they stimulate an immune reaction during six weeks in vivo. The fibers survived 6 weeks with little evidence of fragmentation or degradation. The polymerization scheme described here produces a fiber-reinforced NDGA-polymer with mechanical properties approaching an elastic solid. The strength, stiffness and fatigue properties of the NDGA-treated fibers are comparable to those of tendon. These fibers are biocompatible with tendon fibroblasts and elicit little rejection or antigenic response in vivo. These results indicate that NDGA polymerization may provide a viable approach for producing collagenous materials that can be used to bridge gaps in ruptured or lacerated tendons. The tendon-like properties of the NDGA-fiber would allow early mobilization after surgical repair. We predict that timely loading of parted tendons joined by this novel biomaterial will enhance mechanically driven production of neo-tendon by the colonizing fibroblasts and result in superior repair and rapid return to normal properties.  相似文献   

14.
The glycosaminoglycan (GAG) side-chains of small leucine-rich proteoglycans have been postulated to mechanically cross-link adjacent collagen fibrils and contribute to tendon mechanics. Enzymatic depletion of tendon GAGs (chondroitin and dermatan sulfate) has emerged as a preferred method to experimentally assess this role. However, GAG removal is typically incomplete and the possibility remains that extant GAGs may remain mechanically functional. The current study specifically investigated the potential mechanical effect of the remaining GAGs after partial enzymatic digestion.A three-dimensional finite element model of tendon was created based upon the concept of proteoglycan mediated inter-fibril load sharing. Approximately 250 interacting, discontinuous collagen fibrils were modeled as having a length of 400 μm, being composed of rod elements of length 67 nm and E-modulus 1 GPa connected in series. Spatial distribution and diameters of these idealized fibrils were derived from a representative cross-sectional electron micrograph of tendon. Rod element lengths corresponded to the collagen fibril D-Period, widely accepted to act as a binding site for decorin and biglycan, the most abundant proteoglycans in tendon. Each element node was connected to nodes of any neighboring fibrils within a radius of 100 nm, the slack length of unstretched chondroitin sulfate. These GAG cross-links were the sole mechanism for lateral load sharing among the discontinuous fibrils, and were modeled as bilinear spring elements. Simulation of tensile testing of tendon with complete cross-linking closely reproduced corresponding experiments on rat tail tendons. Random reduction of 80% of GAG cross-links (matched to a conservative estimate of enzymatic depletion efficacy) predicted a drop of 14% in tendon modulus. Corresponding mechanical properties derived from experiments on rat tail tendons treated in buffer with and without chondroitinase ABC were apparently unaffected, regardless of GAG depletion. Further tests for equivalence, conservatively based on effect size limits predicted by the model, confirmed equivalent stiffness between enzymatically depleted tendons and their native controls.Although the model predicts that relatively small quantities of GAGs acting as primary collagen cross-linking elements could provide mechanical integrity to the tendon, partial enzymatic depletion of GAGs should result in mechanical changes that are not reflected in analogous experimental testing. We thus conclude that GAG side chains of small leucine-rich proteoglycans are not a primary determinant of tensile mechanical behavior in mature rat tail tendons.  相似文献   

15.
The incidence of tendon degeneration and rupture increases with advancing age. The mechanisms underlying this increased risk remain unknown but may arise because of age-related changes in tendon mechanical properties and structure. Our purpose was to determine the effect of aging on tendon mechanical properties and collagen fibril morphology. Regional mechanical properties and collagen fibril characteristics were determined along the length of tibialis anterior (TA) tendons from adult (8- to 12-mo-old) and old (28- to 30-mo-old) mice. Tangent modulus of all regions along the tendons increased in old age, but the increase was substantially greater in the proximal region adjacent to the muscle than in the rest of the tendon. Overall end-to-end modulus increased with old age at maximum tendon strain (799 ± 157 vs. 1,419 ± 91 MPa) and at physiologically relevant strain (377 ± 137 vs. 798 ± 104 MPa). Despite the dramatic changes in tendon mechanical properties from adulthood to old age, collagen fibril morphology and packing fraction remained relatively constant in all tendon regions examined. Since tendon properties are influenced by their external loading environment, we also examined the effect of aging on TA muscle contractile properties. Maximum isometric force did not differ between the age groups. We conclude that TA tendons stiffen in a region-dependent manner throughout the life span, but the changes in mechanical properties are not accompanied by corresponding changes in collagen fibril morphology or force-generating capacity of the TA muscle.  相似文献   

16.
Changes in the macromolecular orientation and metachromasy of glycosaminoglycans (GAG) in newly synthesized and assembled collagen fibers in rat Achilles tendon after tendon excision were investigated in toluidine blue (TB)-stained preparations, based in the selective absorption of polarized light (= linear dichroism, LD) and of absorption of unpolarized light in situ. Extrinsic LD was observed microspectrophotometrically from the early phases of tendon repair onwards, although the absorption peaks in both parallel and perpendicular directions with respect to the plane of polarized light and the long axis of the collagen fibers occurred at the same wavelength, and thus differed from the pattern situation in normal adult controls. Compared to normal adult tendons, the pattern of LD in newly synthesized and assembled fibers was still not fully attained 110 days after surgical tendon removal. This incomplete recovery possibly reflected the influence of aging during the repair process. There was no correlation between LD and metachromasy. The highest absorption values for metachromatic staining occurred on the 7th day after tendon removal, at a time when LD was not intense. Treatment with hyaluronidase showed that the LD in the early stages of tendon repair was mostly due to hyaluronate whereas the LD in the later stages was due to chondroitin sulfates. The changes in LD during Achilles tendon repair were attributed to gradual modifications in the composition and macromolecular orientation of GAGs relative to the long axis of the collagen fibers.  相似文献   

17.
The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure–function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure–function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p = 0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.  相似文献   

18.
It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required.  相似文献   

19.
The non-woven fabric of polyester (control) and the composite material of the non-woven fabric of polyester and chitin (Chitipack P) were implanted to bovine flexor tendon. After 3 weeks implantation, type IV collagen and elastic fibers were significantly increased and type I collagen was decreased in Chitipack P in comparison with control. The breaking strength was about twice as high in Chitipack P than in control. The polykaryocytes in the control were more difficult to digest for the collagens. Angiogenesis in the implanted non-woven fabric and in the neighboring resected tendons was much stronger in Chitipack P. Chitin induced type IV collagen and elastic fibers in the prostheses.  相似文献   

20.
Summary A variety of human tendons have been studied at the electron microscope level. The fibers of these tendons are composed of collagen fibrils that average 1,750 Å and 600 Å in diameter. A third population that measures 100 Å in diameter may represent immature collagen or filaments that are incorporated into tendon elastic fibers. The larger collagen fibrils vary in ratio with respect to one another, and are connected by interfibrillar bridges which in some cases appear to extend through the substance of the fibril. The collagen fibrils of the paratenon are less-well organized than those of the tendon proper and average 600 Å in diameter. Tendons that exhibit the property of lateral stretch (plantaris and palmaris) were compared at the ultrastructural level with tendons that do not have this property. No differences between the two tendon types could be determined in normal or spread preparations, indicating that the differences in physical characteristics are a result of fiber rather than fibril organization.Supported by Edward G. Schlieder Foundation GrantThe authors wish to thank Mrs. Janell Buck and Mrs. Eunice Schwartz for their excellent technical and secretarial assistance, and Mr. Garbis Kerimian for his excellent photographic work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号