首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since angiotensin (Ang) (1-7) injected into the brain blocked Ang II pressor actions in rats made hypertensive by aortic coarctation (CH), we examined systemic and tissue angiotensin peptide levels, specifically concentrating on the hypothalamic Ang-(1-7) levels. Plasma, heart and kidney isolated from CH rats showed increased levels of Ang I, Ang II and Ang-(1-7) compared with the normotensive group, with Ang II being the predominant peptide in heart and kidney. In the hypothalamus, equimolar amounts of Ang II and Ang-(1-7) were found in the sham group, whereas only Ang-(1-7) levels increased in CH rats. We conclude that aortic coarctation activates systemic and tissue renin-angiotensin system. The increased central levels of Ang-(1-7) in the CH rats suggest a potential mitigating role of this peptide in central control of the hypertensive process.  相似文献   

2.
TCV-116, a recently developed angiotensin II (Ang II) receptor antagonist, was administered orally (1 mg/kg per day) to 10-week-old spontaneously hypertensive rats (SHR) for 2 weeks. Blood pressure and plasma components of the renin-angiotensin-aldosterone system were determined in these rats. TCV-116 produced a marked reduction in blood pressure without altering heart rate. Whereas plasma renin concentration (PRC), angiotensin I (Ang I) and angiotensin II (Ang II) all were significantly increased, plasma aldosterone was decreased by approximately 70% compared with control animals. These results not only indicate therapeutic efficacy of this agent in the chronic treatment of human hypertension, but support also the concept that the renin-angiotensin system plays an important role in the control of blood pressure in this animal model of human essential hypertension.  相似文献   

3.
Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study.  相似文献   

4.
Although angiotensin II (Ang II) plays a key role in development of organ ischemia-reperfusion injury, it remains unclear whether it is involved in development of intestinal injury following trauma-hemorrhage (T-H). Studies have shown that 17beta-estradiol (E2) administration following T-H improves small intestinal blood flow; however, it is unclear whether Ang II plays a role in this E2-mediated salutary effect. Male Sprague-Dawley rats underwent laparotomy and hemorrhagic shock (removal of 60% total blood volume, fluid resuscitation after 90 min). At onset of resuscitation, rats were treated with vehicle, E2, or E2 and estrogen receptor antagonist ICI 182,780 (ICI). A separate group of rats was treated with Ang II subtype I receptor (AT1R) antagonist losartan. At 24 h after T-H, plasma Ang II, IL-6, TNF-alpha, intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels, myeloperoxidase (MPO) activity, and AT1R expression were determined. T-H significantly increased plasma and intestinal Ang II, IL-6, TNF-alpha levels, intestinal ICAM-1, CINC-1, CINC-3 levels, MPO activity, and AT1R protein compared with shams. E2 treatment following T-H attenuated increased intestinal MPO activity, Ang II level, and AT1R protein expression. ICI administration abolished the salutary effects of E2. In contrast, losartan administration attenuated increased MPO activity without affecting Ang II and AT1R levels. Thus Ang II plays a role in producing small intestine inflammation following T-H, and the salutary effects of E2 on intestinal inflammation are mediated in part by Ang II and AT1R downregulation.  相似文献   

5.
Urinary excretion rates of angiotensin I (Ang I), angiotensin II (Ang II), and angiotensin-(1-7) [Ang-(1-7)] were determined in normotensive Sprague Dawley (SD), spontaneously hypertensive (SHR), and mRen-2 transgenic hypertensive animals before and following blockade of Ang II synthesis or activity for two weeks. This study was performed to determine for the first time whether inhibition of Ang II alters the excretion of angiotensin peptides in the urine. Rats were given either tap water or water medicated with lisinopril, losartan or both agents in combination. Blood pressure was monitored at regular intervals during the experiment by the tail-cuff method, and once again at the end of the study with a catheter implant into a carotid artery. Metabolic studies and 24 h urinary excretion variables and angiotensin peptides were determined before and during the procedures. While all three treatments normalized the blood pressure of hypertensive animals, therapy with either lisinopril or the combination of lisinopril and losartan had a greater antihypertensive effect in both SHR and [mRen-2]27 transgenic hypertensive rats. In the urine, the concentration of the angiotensins (normalized by 24-h creatinine excretion) was several-fold higher in the untreated hypertensive animals than in normotensive SD rats. In SD rats, lisinopril or lisinopril and losartan produced a sustained rise in urinary levels of Ang-(1-7) without changes in the excretion of Ang I and Ang II. In contrast, Ang I and Ang-(1-7) were significantly elevated in SHR medicated with lisinopril alone or in combination with losartan. Only losartan, however, augmented urinary levels of Ang II in the SHR. The antihypertensive effects of the three separate regimens had no effect on the urinary excretion of angiotensin peptides in [mRen-2]27 transgenic hypertensive rats. These data show that Ang I and Ang-(1-7) are excreted in large amounts in the urine of SD, SHR and [mRen-2]27 hypertensive rats. The unchanged Ang-(1-7) excretion in transgenic hypertensive (Tg+) rats after inhibition of the renin-angiotensin system agrees with the previous finding of a reduced plasma clearance of the peptide in this model of hypertension. The data suggest that this form of hypertension may be associated with increased activity of an endogenous converting enzyme inhibitor.  相似文献   

6.
The renin–angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue.  相似文献   

7.
The objective of the present work was to study the cardiovascular actions of the intrahypothalamic injection of Ang-(1-7) and its effects on the pressor response to Ang II in spontaneously hypertensive (SH) rats and Wistar Kyoto (WKY) animals. In anaesthetized SH and WKY rats, a carotid artery was cannulated for mean arterial pressure (MAP) measurement and a stainless-steel needle was inserted into the anterior hypothalamus for drug administration. The cardiovascular effects of the intrahypothalamic administration of Ang-(1-7) were determined in SH and WKY rats. In SH rats, the effect of irbesartan and D-Ala-Ang-(1-7) on Ang-(1-7) cardiovascular effect was also evaluated. Ang II was administered in the hypothalamus of SH and WKY rats and changes in blood pressure and heart rate were measured followed by the administration of Ang II, Ang II+Ang-(1-7) or Ang II+D-Ala-Ang-(1-7). Ang-(1-7) did not the change basal MAP in WKY rats, but induced a pressor response in SH animals. Whilst the co-administration of D-Ala-Ang-(1-7) did not affect the response to Ang-(1-7), the previous administration of irbesartan prevented the effect of the peptide. The intrahypothalamic injection of Ang II induced a significantly greater pressor response in SH animals compared to normotensive rats. The co-administration of Ang-(1-7) with Ang II did not affect the pressor response to Ang II in the WKY group. In SH rats, whilst the co-administration of Ang-(1-7) with Ang II reduced the pressor response to Ang II, the concomitant application of D-Ala-Ang-(1-7) with Ang II increased the pressor response to the octapeptide after 5 and 10 min of intrahypothalamic administration. In conclusion, our result demonstrated that the biologically active peptide Ang-(1-7) did not participate in the hypothalamic blood pressure regulation of WKY animals. In SH rats, Ang-(1-7) exerted pleiotropic effects on blood pressure regulation. High dose of the heptapeptide produced a pressor response because of an unspecific action by activation of AT1 receptors. The concomitant administration of lower doses of Ang-(1-7) with Ang II reduced the pressor response to the octapeptide. Finally, the effect of AT(1-7) antagonist on Ang II pressor response suggested that hypothalamic formed Ang-(1-7) are implicated in the regulation of the cardiovascular effects of Ang II.  相似文献   

8.
The effect of Losartan (10(-9) to 10(-6) M) on angiotensins I and II release was examined in isolated hind legs perfused with Krebs-Ringer solution from normal and bilaterally nephrectomized rats. Losartan increased dramatically both angiotensins I (Ang I) and II (Ang II) release in a dose-dependent fashion; the maximal percent increment in Ang I and Ang II release evoked by Losartan (10(-6) M) was about +380% and +160%, respectively, in normal rat hind legs. In nephrectomized animals, Losartan elicited a marked increase in both peptides dose-dependently. There was a highly positive correlation between the released amounts of Ang I and that of Ang II altered by Losartan in either normal (r = 0.954) or nephrectomized rats (r = 0.923). These results not only confirm the existence of a functional renin-angiotensin system in vascular tissues, but also suggest that the system is regulated by locally generated Ang II.  相似文献   

9.
Cardiomyocyte apoptosis has an important role in the transition from compensatory cardiac remodeling to heart failure. All-trans retinoic acid (RA), a bioactive vitamin A derivative, prevents stretch- and angiotensin II (Ang II)-induced cardiac hypertrophy. However, the anti-apoptotic potential of RA in the heart remains unexplored. Here, we demonstrate that stretch- and Ang II-induced apoptosis is prevented by RA in neonatal cardiomyocytes. RA improved mitochondrial function by inhibiting the stretch- and Ang II-induced reduction in mitochondrial membrane potential, cytochrome c release and by increasing the Bcl2/Bax ratio. RA inhibited stretch- and Ang II-induced intracellular reactive oxygen species (ROS) generation and upregulated the SOD2 level. Hydrogen peroxide-induced increases in the number of TUNEL-positive cells and percentage of Annexin V positive cells, were dose-dependently inhibited by RA. The thiol antioxidant, N-acetyl cysteine (NAC), completely inhibited stretch- and Ang II-induced apoptosis. Using diazoxide (mitochondrial ATP-sensitive K(+) channel opener) and SDS (NADPH oxidase activator), we confirmed that RA suppressed both mitochondrial- and NADPH oxidase-derived ROS. We also observed that both RAR and RXR were involved in preventing Ang II- and stretch-induced ROS production and apoptosis, by using selective retinoid receptor agonists and antagonists. Our data provide the first evidence that RA prevents Ang II and stretch induced apoptosis, by inhibiting ROS generation and increasing the anti-oxidant defense system, suggesting that RA-mediated signaling may provide a new therapeutic target for the prevention of the cardiac remodeling process.  相似文献   

10.
Shan ZZ  Dai SM  Fang F  Su DF 《生理学报》2003,55(1):75-78
既往的研究表明,动脉压力感受性反射(ABR)功能下降在高血压靶器官损伤中起独立作用。为进一步研究ABR功能下降致器官损伤的可能机制,实验采用去窦弓神经(SAD)大鼠作为ABR受损的动物模型,分别测定清醒、自由活动状态下SAD及对照的假手术组大鼠24h动脉血压、心率、血压波动性(BPV)及心率波动性(HRV)。并采用放免法测定血浆、心脏和肾脏组织的血管紧张素Ⅱ(AngⅡ)含量。结果发现,SAD术后1周大鼠的24h平均收缩压(SBP)、舒张压(DBP)均显著高于对照组及术后18周的慢性期SAD大鼠。SAD术后18周,24h平均SBP、DBP及HR与假手术对照组均无显著差异;24h收缩压波动性(SBPV)和舒张压波动性(DBPV)均显著高于对照组大鼠。SAD大鼠术后1周的血浆、心脏和肾脏组织的AngⅡ含量及术后18周的血浆AngⅡ水平与对照组之间相比无显著差异。而在术后慢性期(18周),SAD大鼠的心肌及肾组织AngⅡ含量显著高于假手术对照组大鼠。在术后18周时,接受慢性应激刺激的SAD大鼠,其血浆、心肌及肾组织中AngⅡ水平显著高于同处应激状态下的假手术对照组大鼠及未接受应激刺激的SAD大鼠。这些结果表明,SAD术后急性期血压增高,但在慢性期平均血压并无增高,仅BPV增高;慢性期心、肾组织内AngⅡ的分泌增加。在慢性期接受应激可致AngⅡ过度分泌,上述结果提示,BPV增高和心、肾组织AngⅡ含量升高与SAD大鼠发生心脏、肾脏等器官损害有关。  相似文献   

11.
Yang H  Zeng XJ  Wang HX  Zhang LK  Dong XL  Guo S  Du J  Li HH  Tang CS 《Peptides》2011,32(10):2108-2115
Angiotensin II (Ang II) is an important regulator of cardiac function and injury in hypertension. The novel Ang IV peptide/AT4 receptor system has been implicated in several physiological functions and has some effects opposite to those of Ang II. However, little is known about the role of this system in Ang II-induced cardiac injury. Here we studied the effect of Ang IV on Ang II-induced cardiac dysfunction and injury using isolated rat hearts, neonatal cardiomyocytes and cardiac fibroblasts. We found that Ang IV significantly improved Ang II-induced cardiac dysfunction and injury in the isolated heart in response to ischemia/reperfusion (I/R). Moreover, Ang IV inhibited Ang II-induced cardiac cell apoptosis, cardiomyocyte hypertrophy, and proliferation and collagen synthesis of cardiac fibroblasts; these effects were mediated through the AT4 receptor as confirmed by siRNA knockdown. These findings suggest that Ang IV may have a protective effect on Ang II-induced cardiac injury and dysfunction and may be a novel therapeutic target for hypertensive heart disease.  相似文献   

12.
13.
The renin angiotensin system (RAS) is a peptide hormone system that plays an important role in the pathophysiology of various diseases, including congestive heart failure, hypertension, myocardial infarction, and diabetic nephropathy. This has led researchers to focus extensively on this system, leading to the discovery of various peptides, peptidases, receptors and signal transduction mechanisms intrinsic to the RAS. Angiotensinogen (AGT), angiotensin (Ang) II, Ang III, Ang IV, and Ang-(1–7) are the main biologically active peptides of RAS. However, most of the available studies have focused on Ang II as the likely key peptide from the RAS that directly and indirectly regulates physiological functions leading to pathological conditions. However, data from recent studies suggest that Ang III may produce physiologically relevant effects that are similar to those produced by Ang II. Hence, this review focuses on Ang III and the myriad of physiological effects that it produces in the body.  相似文献   

14.
It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.  相似文献   

15.
16.
A local renin-angiotensin system (RAS) that may be involved in their regulatory functions has been identified in hypothalamus and pituitary. Altered thyroid status induces modifications in the secretory function of hypothalamus and pituitary. However, few studies have analyzed the role of the RAS in hypothalamus and, to our knowledge, there is no data on the pituitary RAS during thyroid dysfunction. In the present study, angiotensinase activities (glutamyl, aspartyl and alanyl aminopeptidase: GluAP, AspAP and AlaAP, respectively) were studied in hypothalamus and in the anterior and posterior lobes of pituitary of euthyroid, hypothyroid and hyperthyroid adult male rats. In the anterior pituitary, compared with euthyroid and hyperthyroid rats, hypothyroid animals showed a highly significant increase of GluAP and AspAP activities; the percentage increase in GluAP was markedly higher than the percentage increase in AspAP. This suggests an increased metabolism of angiotensin (Ang) I and Ang II to des-Asp 1-Ang I and Ang III, respectively. We also observed an increase of Ang III-degrading activity (AlaAP) in the hypothalamus of hyperthyroid rats in soluble fraction. Increased Ang I and Ang II metabolism in the anterior pituitary of hypothyroid rats and increased metabolism of Ang III in the hypothalamus of hyperthyroid animals may be related to alterations in the secretory function of hypothalamus and pituitary in these thyroid dysfunctions.  相似文献   

17.
Rats exposed chronically to a cold environment (5 degrees C/4 degrees F) develop hypertension. This cold-induced hypertension (CIH) is a non-genetic, non-pharmacological, non-surgical model of environmentally induced hypertension in rats. The renin-angiotensin system (RAS) appears to play a role in both initiating and/or maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of central and peripheral circulating RAS components, angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin (Ang) II, in CIH. Seventy-two Sprague-Dawley adult male rats were used. Thirty-six rats were kept in cold room at 5 degrees C while the other 36 were at 24 degrees C as controls for 5 weeks. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was increased in rats exposed to cold within 1 week, and this increase was significant for the next 2-5 weeks of the cold exposure (p<0.01). Three subgroups of the cold-treated and control rats (n=12) were sacrificed at 1, 3 and 5 weeks. The brain and liver were removed and plasma was saved. The AGT mRNA significantly increased in the hypothalamus and liver in cold-treated rats from the first week of exposure to cold, and was maintained throughout the time of exposure to cold (n=4, p<0.01). The AGT protein levels in the brain, liver and plasma did not differ significantly between cold-treated and control rats (p>0.05, n=4). The hypothalamic Ang II levels were significantly increased, whereas plasma Ang II levels significantly decreased, in the rats of 5 weeks of cold exposure (n=8, p<0.05). Plasma ACE significantly increased in the rats of 1 week of cold exposure (p<0.05, n=12). The results show differential regulation of RAS components, AGT, ACE and Ang II, between brain and periphery in cold-exposed rats. We conclude that the exposure to low temperature initially increases plasma RAS but with continuous exposure to cold, the brain RAS maintains the hypertension, probably by sustained sympathetic activation, which would provide increased metabolism but also vasoconstriction leading to hypertension.  相似文献   

18.
A pore chip protein array (PCPA) concept based on a dual readout configuration, fluorescence imaging, and MALDI-TOF MS has been developed. Highly packed, (>4000 spots/cm2), antibody arrays were dispensed on the porous chip by using a piezo-electric microdispenser. Sandwich assay was made after blocking by addition of a secondary antibody either IgG-FITC-labeled or anti-Ang II. The antigen in the first system was a large protein (IgG), and in the other system, a FITC marked peptide Angiotensin II (Ang II) was used. Ang II antibodies showed specificity for Ang II, while the Ang I antibodies showed binding properties for Ang I, II, and Renin. Fluorescence and MALDI TOF MS read-out was made for IgG and Ang II. A major advantage of the dual read-out PCPA approach is that both affinity binding and mass identity are derived. Detection limits for Ang II on the chip is as low as 500 zmol (Ang II).  相似文献   

19.
Renin-Angiotensin System (RAS) plays an important role in the development of Metabolic Syndrome (MS) and in aging. Angiotensin 1-7 (Ang 1-7) has opposite effects to Ang II. All of the components of RAS are expressed locally in adipose tissue and there is over-activation of adipose RAS in obesity and hypertension. We determined serum and abdominal adipose tissue Ang II and Ang 1-7 in control and MS rats during aging and the expression of AT1, AT2 and Mas in white adipose tissue. MS was induced by sucrose ingestion during 6, 12 and 18 months. During aging, an increase in body weight, abdominal fat and dyslipidemia were found but increases in aging MS rats were higher. Control and MS concentrations of serum Ang II from 6-month old rats were similar. Aging did not modify Ang II seric concentration in control rats but decreased it in MS rats. Ang II levels increased in WAT from both groups of rats. Serum and adipose tissue Ang 1-7 increased during aging in MS rats. Western blot analysis revealed that AT1 expression increased in the control group during aging while AT2 and Mas remained unchanged. In MS rats, AT1 and AT2 expression decreased significantly in aged rats. The high concentration of Ang 1-7 and adiponectin in old MS rats might be associated to an increased expression of PPAR-γ. PPAR-γ was increased in adipose tissue from MS rats. It decreased with aging in control rats and showed no changes during aging in MS rats. Ang 1-7/Mas axis was the predominant pathway in WAT from old MS animals and could represent a potential target for therapeutical strategies in the treatment of MS during aging.  相似文献   

20.
The ovarian renin-angiotensin system (RAS) has been studied extensively in the virgin cycling rat, but little information is available about this system in pregnant and postpartum rats. We show that renin and angiotensin I-converting enzyme (ACE)--the key enzymes involved in angiotensin II (Ang II) formation--and Ang II receptors, are present in pregnant and postpartum rat ovaries. From gestation Days 2-4 to 10-12, active ovarian renin ranged from 1.12 +/- 0.13 to 1.27 +/- 0.19 ng Ang I/h/mg and comprised between 68 and 86% of total (active+inactive) ovarian renin activity. Between Days 10-12 and Days 14-16 of pregnancy, ovarian active renin activity increased slightly, but inactive renin disappeared, suggesting its activation; the remaining active renin then decreased 62% by Days 18-20 (p < 0.05). On postpartum Day 2, both active and total ovarian renin activity exceeded that of Days 2-20 of pregnancy (p < 0.05); levels of both then declined sharply by postpartum Day 3 (p < 0.05). In pregnant rats, levels of ovarian Ang II receptors, identified by the specific binding of [125I]-[Sar1,Ile8]Ang II to ovarian membranes, were high between Days 2-4 and 10-12 of pregnancy, ranging from 12.8 +/- 1.7 to 15.7 +/- 3.4 fmol/mg, but steadily declined by 82% between gestation Days 10-12 and 18-20 (p < 0.05). Postpartum Ang II receptor levels on Days 2, 3, and 4 showed a gradual increase from low levels comparable to Days 18-20 of pregnancy. Ovarian ACE activity did not change throughout pregnancy or during the postpartum period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号