首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Cryptosporidium is an important protozoan that cause diarrheal illness in humans and animals. Different species of Cryptosporidium have been reported and it is believed that species characteristics are an important factor to be considered in strategic planning for control. We therefore analyzed oocysts from human and animal isolates of Cryptosporidium by PCR-RFLP to determine strain variation in Isfahan. In total, 642 human fecal samples from children under five years of age, immunocompromised patients, and high risk persons and 480 randomly selected rectal specimens of cows and calves in Isfahan were examined. Microscopic examination showed that 4.7% (30/642) of human samples and 6.2% (30/480) of animal samples were infected with Cryptosporidium. After identification of the samples infected with the parasite, oocysts were purified and their DNA was extracted. We used PCR-RFLP analysis of a 1750-bp region of 18S rRNA gene to identify Cryptosporidium species. The human samples were infected with Cryptosporidium parvum II, C. muris, C. wrairi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520951). The cattle samples were identified as C. parvum II, C. muris, C. wrairi, C. serpentis, C. baileyi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520952). Also we found a new genotype infecting both human and cattle samples (GenBank accession numbers: DQ520950). In addition to demonstrating the widespread occurrence of most species of Cryptosporidium, C. parvum, we also observed extensive polymorphism within species. Furthermore, the occurrence of the same species of parasite in both animal and human samples shows the importance of the animal-human cycle.  相似文献   

2.
Prevalence and Identity of Cryptosporidium spp. in Pig Slurry   总被引:1,自引:0,他引:1       下载免费PDF全文
Cryptosporidium spp. were detected in 25 of 56 pig slurry samples from 33 Irish farms by PCR and DNA sequencing. The organisms detected included C. suis, Cryptosporidium pig genotype II, and C. muris. We concluded that Cryptosporidium oocysts can persist in treated slurry and potentially contaminate surface water through improper discharge or uncontrolled runoff.  相似文献   

3.
We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65 degrees C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.  相似文献   

4.
Evaluation of Cryptosporidium parvum genotyping techniques.   总被引:7,自引:0,他引:7  
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

5.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

6.
7.
Cryptosporidium canis n. sp. from domestic dogs.   总被引:9,自引:0,他引:9  
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts approximately 90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.  相似文献   

8.
To assess the source and public health significance of Cryptosporidium oocyst contamination in storm runoff, a PCR-restriction fragment length polymorphism technique based on the small-subunit rRNA gene was used in the analysis of 94 storm water samples collected from the Malcolm Brook and N5 stream basins in New York over a 3-year period. The distribution of Cryptosporidium in this study was compared with the data obtained from 27 storm water samples from the Ashokan Brook in a previous study. These three watersheds represented different levels of human activity. Among the total of 121 samples analyzed from the three watersheds, 107 were PCR positive, 101 of which (94.4%) were linked to animal sources. In addition, C. hominis (W14) was detected in six samples collected from the Malcolm Brook over a 2-week period. Altogether, 22 Cryptosporidium species or genotypes were found in storm water samples from these three watersheds, only 11 of which could be attributed to known species/groups of animals. Several Cryptosporidium spp. were commonly found in these three watersheds, including the W1 genotype from an unknown animal source, the W4 genotype from deer, and the W7 genotype from muskrats. Some genotypes were found only in a particular watershed. Aliquots of 113 samples were also analyzed by the Environmental Protection Agency (EPA) Method 1623; 63 samples (55.7%) were positive for Cryptosporidium by microscopy, and 39 (78%) of the 50 microscopy-negative samples were positive by PCR. Results of this study demonstrate that molecular techniques can complement traditional detection methods by providing information on the source of contamination and the human-infective potential of Cryptosporidium oocysts found in water.  相似文献   

9.
The ex vivo and in vivo reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts after exposure to different doses of ultraviolet (UV) radiation was determined using animal infectivity. The infectivity of UV-treated parasites stored for 1-4 days (G. muris) or 1-17 days (C. parvum) at room temperature in the dark was similar to that of organisms administered immediately after UV treatment, indicating that the parasites did not reactivate ex vivo. In contrast, we observed in vivo reactivation of G. muris in three of seven independent animal infectivity experiments, when parasites were treated with relatively low doses of medium-pressure UV (<25 mJ/cm(2)). Our observations indicate that G. muris cysts and C. parvum oocysts exposed to medium-pressure UV doses of 60 mJ/cm(2) or higher did not exhibit resistance to and/or reactivation following treatment. This suggests that when appropriate doses of UV are used, significant and permanent inactivation of these parasites may be achieved.  相似文献   

10.
Cryptosporidiosis is a common parasitic infection in birds that is caused by more than 25 Cryptosporidium species and genotypes. Many of the genotypes that cause avian cryptosporidiosis are poorly characterized. The genetic and biological characteristics of avian genotype III are described here and these data support the establishment of a new species, Cryptosporidium proventriculi. Faecal samples from the orders Passeriformes and Psittaciformes were screened for the presence of Cryptosporidium by microscopy and sequencing, and infections were detected in 10 of 98 Passeriformes and in 27 of 402 Psittaciformes. Cryptosporidium baileyi was detected in both orders. Cryptosporidium galli and avian genotype I were found in Passeriformes, and C. avium and C. proventriculi were found in Psittaciformes. Cryptosporidium proventriculi was infectious for cockatiels under experimental conditions, with a prepatent period of six days post-infection (DPI), but not for budgerigars, chickens or SCID mice. Experimentally infected cockatiels shed oocysts more than 30 DPI, with an infection intensity ranging from 4,000 to 60,000 oocysts per gram (OPG). Naturally infected cockatiels shed oocysts with an infection intensity ranging from 2,000 to 30,000 OPG. Cryptosporidium proventriculi infects the proventriculus and ventriculus, and oocysts measure 7.4 × 5.8 μm. None of the birds infected C. proventriculi developed clinical signs.  相似文献   

11.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

12.
In the genus Cryptosporidium, there are more than 14 species with different sizes and habitats, as well as different hosts. Among these, C. parvum and C. hominis are known to be human pathogens. As C. parvum can survive exposure to harsh environmental conditions, including various disinfectants or high doses of radiation, it is considered to be an important environmental pathogen that may be a threat to human health. However, the resistance of other Cryptosporidium species to various environmental conditions is unknown. In this study, resistance against γ-irradiation was compared between C. parvum and C. muris using in vivo infection in mice. The capability of C. muris to infect mice could be eliminated with 1,000 Gy of γ-irradiation, while C. parvum remained infective in mice after up to 1,000 Gy of γ-irradiation, although the peak number of oocysts per gram of feces decreased to 16% that of non-irradiated oocysts. The difference in radioresistance between these 2 Cryptosporidium species should be investigated by further studies.  相似文献   

13.
Each of SPF mice(Scl: ICR strain, 3-week-old males) was inoculated with 5 x 10(4) oocysts of Cryptosporidium by stomach tube. The oocysts were large type one which was previously isolated from Korean mice, and passaged in 3-week-old SPF mice. The patterns of oocyst discharge were monitored daily, and in order to observe the ultrastructure of developmental stages the stomach of the mice was examined by transmission electron microscopy (TEM) at 4 weeks post-inoculation. The prepatent period for 6 mice was 5.6 days post-inoculation on the average, and the patent period was 63.2 days. The number of oocysts discharged per day from the mice reached peak on day 36.6 post-inoculation on the average. A large number of oocysts were found in fecal samples obtained from inoculated mice on days 30-50 post-inoculation. C. muris was larger than C. parvum at almost every developmental stages, the size difference being 1.4 times in oocysts, 2.4 times in sporozoites, 1.6 times in merozoites, and 1.5 times in microgametes. The ultrastructural features of the attachment site of C. muris to the mucus cells were remarkably different from those of C. parvum and its closely related species. The anterior projection of the protozoa (C. muris), the outer aspect of which was surrounded by a thick filamentous process of the host cell, has not been reported at any developmental stages of C. parvum or its closely related species. The size of the oocysts of strain RN 66 was larger than that of Korean mice origin. The above results reveal that the large type Cryptosporidium of Korean mice origin is identified as Cryptosporidium muris and this type was named as C. muris (strain MCR).  相似文献   

14.
A cross-sectional study was carried out to identify species and determine the prevalence of Cryptosporidium sp. shedding in pre-weaned and post-weaned dairy calves and to identify management factors that may be contributing to disease. A total of 240 calf faecal samples were collected from 16 farms in two districts in Johor, Malaysia, and screened by PCR. The overall Cryptosporidium prevalence was 27.1%. The prevalence of Cryptosporidium species in pre-weaned calves was 32.4% for C. parvum, 26.5% for C. bovis, followed by C. andersoni (20.6%), C. ryanae (11.8%) and mixed sp. (8.8%). The prevalence of Cryptosporidium species in post-weaned calves was 35% for C. bovis followed by C. andersoni and C. ryanae (30% each) and mixed sp. (5%). Subtyping analysis of 8 of the 11 C. parvum isolates at the gp60 locus identified five isolates as IIdA15G1, one as IIa18A3R1 and two isolates as IIa17G2R1. Management factors that increased the risk of Cryptosporidium infection included having other cattle farms close by, feeding calves with saleable milk, keeping pre-weaned calves in pens with slatted floors and keeping post-weaned calves in pens with a sand floor.  相似文献   

15.
Oocysts of Cryptosporidium muris (Apicomplexa: Cryptosporidiidae) were obtained from the feces of naturally infected calves. Oocysts were fully sporulated in fresh feces, measured 7.4 X 5.6 (6.6 - 7.9 X 5.3 - 6.5) micron, and possessed a longitudinal suture along one pole of the oocyst wall. Morphologic and biologic evidence obtained from this study demonstrated that C. muris is a species distinct from Cryptosporidium parvum, which has smaller oocysts.  相似文献   

16.
Water samples, taken from the intake and rapid filter system of a water purification plant, were analyzed using an immunofluorescence antibody method for detecting the presence of Giardia cysts and Cryptosporidium oocysts. Giardia cysts and Cryptosporidium oocysts were found in the intake water from zero to 38.7 cysts/100 l and 1.7–50.5 oocysts/100 l with averages of 9.6 cysts/100 l and 19.4 oocysts/100 l. Giardia cysts and Cryptosporidium oocysts were also detected in the samples taken from the rapid filtration unit with mean concentrations of zero to 2.3 cysts/100 l and 0–2.5 oocysts/100 l, respectively. The efficacy of the rapid filter in suspended material and (oo)cyst removal was significant. The removal late was 56–97% for suspended material and 69–100% for the (oo)cysts.  相似文献   

17.
Aims: Investigating the distribution and origin of Cryptosporidium species in a water catchment affected by destocking and restocking of livestock as a result of a foot and mouth disease epidemic. Methods and Results: Surface water, livestock and wildlife samples were screened for Cryptosporidium and oocysts characterised by sequencing SSU rRNA and COWP loci, and fragment analysis of ML1, ML2 and GP60 microsatellite loci. Oocyst concentrations in water samples (0–20·29 per 10 l) were related to rainfall events, amount of rainfall and topography. There was no detectable impact from catchment restocking. Cryptosporidium spp. found in water were indicative of livestock (Cryptosporidium andersoni and Cryptosporidium parvum) and wildlife (novel genotypes) sources. However, C. andersoni was not found in any animals sampled. Calf infections were age related; C. parvum was significantly more common in younger animals (<4 weeks old). Older calves shared Cryptosporidium bovis, Cryptosporidium ryanae and C. parvum. Wildlife shed C. parvum, Cryptosporidium ubiquitum, muskrat genotype II and deer genotype. Conclusions: Several factors affect the occurrence of Cryptosporidium within a catchment. In addition to farmed and wild animal hosts, topography and rainfall patterns are particularly important. Significance and Impact of the Study: These factors must be considered when undertaking risk‐based water safety plans.  相似文献   

18.
This study was undertaken in order to characterize a Cryptosporidium muris-like parasite isolated from cattle in Hungary and to compare this strain with other Cryptosporidium species. To date, the large-type oocysts isolated from cattle were considered as C. muris described from several mammals. The size, form, and structure of the oocysts of the Hungarian strain were identical with those described by others from cattle. An apparent difference between the morphometric data of C. muris-like parasites isolated from cattle or other mammals was noted, which is similar in magnitude to the differences between Cryptosporidium meleagridis and Cryptosporidium felis or between Cryptosporidium serpentis and Cryptosporidium baileyi. The cross-transmission experiments confirmed the findings of others, as C. muris-like oocysts isolated from cattle fail to infect other mammals. The sequence of the variable region of small subunit (SSU) rRNA gene of the strain was 100% identical with that of the U.S. Cryptosporidium andersoni and C. andersoni-like isolates from cattle. The difference between the SSU rRNA sequence of bovine strains and C. muris is similar in magnitude to the differences between C. meleagridis and Cryptosporidium parvum anthroponotic genotype or between Cryptosporidium wrairi and C. parvum zoonotic genotype. Our findings confirm that the Cryptosporidium species responsible for abomasal cryptosporidiosis and economic losses in the cattle industry should be considered a distinct species, C. andersoni Lindsay, Upton, Owens, Morgan, Mead, and Blagburn, 2000.  相似文献   

19.
This study uncovered the prevalence, harboured species, and subtype diversity of Cryptosporidium species in river water and its sediment from the Apies River in South Africa. Cryptosporidium spp. concentrations in freshwater and its sediment were determined using Ziehl-Neelsen staining and quantitative Polymerase Chain Reaction (qPCR) techniques. Next-generation sequencing (NGS) targeting the 60 kDa glycoprotein (gp60) gene of Cryptosporidium spp. was performed to reveal the species, subtype families and subtypes harboured in freshwater and its sediment. Although the results revealed that water samples had a higher prevalence (30%) compared with sediment (28%), the number of observable Cryptosporidium spp. oocysts in sediment samples (ranging from 4.90 to 5.81 log10 oocysts per 1 Liter) was higher than that of river water samples (ranging from 4.60 to 5.58 log10 oocysts per 1 L) using Ziehl-Neelsen staining. The 18S ribosomal ribonucleic acid (rRNA) gene copy of Cryptosporidium in riverbed sediments ranged from 6.03 to 7.65 log10, whereas in river water, it was found to be between 4.20 and 6.79 log10. Subtyping results showed that in riverbed sediments, Cryptosporidium parvum accounted for 40.72% of sequences, followed by Cryptosporidium hominis with 23.64%, Cryptosporidium cuniculus with 7.10%, Cryptosporidium meleagridis with 4.44% and the least was Cryptosporidium wrairi with 2.59%. A considerable percentage of reads in riverbed sediment (21.25%) was not assigned to any subtype. River water samples had 45.63% of sequences assigned to C. parvum, followed by 30.32% to C. hominis, 17.99% to C. meleagridis and 5.88% to C. cuniculus. The data obtained are concerning, as Cryptosporidium spp. have intrinsic resistance to water treatment processes and low infectious doses, which can pose a risk to human health due to the various uses of water (for human consumption, leisure, and reuse).  相似文献   

20.
Cryptosporidium, is the most common non-viral cause of diarrhea worldwide. Of the 5 described species that contribute to the majority of human infections, C. parvum is of major interest due to its zoonotic potential. A species-specific fluorescence in situ hybridisation probe was designed to the variable region in the small subunit of the 18S rRNA of C. parvum and labeled with Cy3. Probe specificity was validated against a panel of 7 other Cryptosporidium spp. before it was applied to 33 human faecal samples positive for cryptosporidiosis which were obtained during the period from 2006–2007. Results were compared to PCR-RFLP targeting the 18S rDNA. FISH results revealed that 19 of the 33 isolates analysed were identified as C. parvum. Correlation of PCR-RFLP and FISH was statistically significant (P < 0.05), resulting in a calculated correlation coefficient of 0.994. In this study, species identification by FISH and PCR-RFLP provided preliminary evidence to support both anthroponotic and zoonotic transmission of sporadic cases of cryptosporidiosis in the Sydney basin. In conclusion, FISH using a C. parvum-specific probe provided an alternative tool for accurate identification of zoonotic Cryptosporidium which will be applied in the future to both epidemiological and outbreak investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号