首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A.  Kirichenko  S. V. 《Neurophysiology》2002,34(2-3):190-193
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes.  相似文献   

2.
In an attempt to identify the functions of neural cell adhesion molecule (NCAM) and tissue plasminogen activator (tPA) in hippocampal synaptic plasticity, we investigated the relationship between the two molecules by focusing on mitogen-activated protein kinase (MAPK), an essential enzyme in this process. NCAM clustering in cultured hippocampal neurons transiently induced MAPK within 10min. Moreover, soluble NCAM also induced a Ras-dependent MAPK activation. Conversely, MAPK activation led to an increase in the expressions of all three isoforms of NCAM. Treatment of neurons with tPA and plasminogen induced a Ras-dependent MAPK activation and tPA-plasmin degradation of NCAM was mediated in a MAPK-dependent manner. Soluble NCAM transiently inhibited tPA mRNA expression levels in a MAPK-dependent manner, while stimulation of MAPK alone induced tPA reduction in cells. These results collectively indicate that NCAM and tPA reciprocally act as important regulators in the modulation of synaptic plasticity via a Ras-MAPK-involved signaling pathway. In turn, MAPK activation may cause tPA degradation or a decrease in expression to promote synaptic plasticity.  相似文献   

3.
The neural cell adhesion molecule (NCAM) regulates synapse formation and synaptic strength via mechanisms that have remained unknown. We show that NCAM associates with the postsynaptic spectrin-based scaffold, cross-linking NCAM with the N-methyl-d-aspartate (NMDA) receptor and Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIalpha) in a manner not firmly or directly linked to PSD95 and alpha-actinin. Clustering of NCAM promotes formation of detergent-insoluble complexes enriched in postsynaptic proteins and resembling postsynaptic densities. Disruption of the NCAM-spectrin complex decreases the size of postsynaptic densities and reduces synaptic targeting of NCAM-spectrin-associated postsynaptic proteins, including spectrin, NMDA receptors, and CaMKIIalpha. Degeneration of the spectrin scaffold in NCAM-deficient neurons results in an inability to recruit CaMKIIalpha to synapses after NMDA receptor activation, which is a critical process in NMDA receptor-dependent long-term potentiation. The combined observations indicate that NCAM promotes assembly of the spectrin-based postsynaptic signaling complex, which is required for activity-associated, long-lasting changes in synaptic strength. Its abnormal function may contribute to the etiology of neuropsychiatric disorders associated with mutations in or abnormal expression of NCAM.  相似文献   

4.
Homeostatic mechanisms maintaining high levels of adhesion molecules in synapses over prolonged periods of time remain incompletely understood. We used fluorescence recovery after photobleaching experiments to analyze the steady state turnover of the immobile pool of green fluorescent protein-labeled NCAM180, the largest postsynaptically accumulating isoform of the neural cell adhesion molecule (NCAM). We show that there is a continuous flux of NCAM180 to the postsynaptic membrane from nonsynaptic regions of dendrites by diffusion. In the postsynaptic membrane, the newly delivered NCAM180 slowly intermixes with the immobilized pool of NCAM180. Preferential immobilization and accumulation of NCAM180 in the postsynaptic membrane is reduced after disruption of the association of NCAM180 with the spectrin cytoskeleton and in the absence of the homophilic interactions of NCAM180 in synapses. Our observations indicate that the homophilic interactions and binding to the cytoskeleton promote immobilization of NCAM180 and its accumulation in the postsynaptic membrane. Flux of NCAM180 from extrasynaptic regions and its slow intermixture with the immobile pool of NCAM180 in the postsynaptic membrane may be important for the continuous homeostatic replenishment of NCAM180 protein at synaptic contacts without compromising the long term synaptic contact stability.  相似文献   

5.
The neural cell adhesion molecule (NCAM) participates in adhesion and neuritic outgrowth during nervous system development. In the adult brain, NCAM is considered to be involved in neuronal sprouting and synaptic remodeling. the NCAM concentration of brain tissue has proved to be a useful marker of these processes, especially when viewed in comparison with the concentration of a marker of mature synapses, e.g. D3-protein (SNAP-25) or synaptophysin. The present review focusses on studies of adult brain in which NCAM concentration estimates and NCAM/D3 ratios have been used to evaluate the rate of synaptic remodeling in brain damage and degenerative diseases.Special issue dedicated to Dr. Robert Balázs.  相似文献   

6.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

7.
To evaluate the contributions of the pre- versus postsynaptic expression of NCAM in regulation of synaptic efficacy, we cultured dissociated hippocampal cells from NCAM-deficient and wild-type mice in homo- and heterogenotypic combinations. Double recordings from synaptically coupled neurons maintained in heterogenotypic cocultures showed that synaptic strength of excitatory but not inhibitory synapses depended on expression of NCAM post- but not presynaptically. This correlated with higher levels of potentiation and synaptic coverage of NCAM-expressing neurons compared to NCAM-deficient neurons in heterogenotypic cocultures. Synaptic density was the same in homogenotypic cultures of NCAM-deficient and wild-type neurons as well as in heterogenotypic cocultures in which glutamate receptors were blocked. These observations indicate that the relative levels of postsynaptic NCAM expression control synaptic strength in an activity-dependent manner by regulating the number of synapses.  相似文献   

8.
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM--plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.  相似文献   

9.
Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.  相似文献   

10.
Dynamic regulation of glycosylation of the neural cell adhesion molecule (NCAM) by an unusual large negatively charged polysialic acid (PSA) is the major prerequisite for correct formation of brain circuitries during development and for normal synaptic plasticity, learning and memory in the adult. Traditionally, PSA is viewed as a de-adhesive highly hydrated molecule, which interferes with cell adhesion and promotes cellular/synaptic dynamics by steric hindrance. Analysis of synaptic functions of PSA-NCAM highlighted additional features of this molecule. First, PSA promotes interaction of NCAM with heparan sulfate proteoglycans and thus stimulates synaptogenesis. Second, PSA-NCAM modulates glutamate receptors: it restrains activity of extrasynaptic GluN2B-containing NMDA receptors and facilitates activity of a subset of AMPA receptors. Perturbation in polysialylation and/or NCAM expression in mouse models recapitulates many symptoms of human brain disorders such as schizophrenia, depression, anxiety and Alzheimer's disease.  相似文献   

11.
NCAM 180 isoform null neuromuscular junctions are unable to effectively mobilize and exocytose synaptic vesicles and thus exhibit periods of total transmission failure during high-frequency repetitive stimulation. We have identified a highly conserved C-terminal (KENESKA) domain on NCAM that is required to maintain effective transmission and demonstrate that it acts via a pathway involving MLCK and probably myosin light chain (MLC) and myosin II. By perfecting a method of introducing peptides into adult NMJs, we tested the hypothesized role of proteins in this pathway by competitive disruption of protein-protein interactions. The effects of KENESKA and other peptides on MLCK and MLC activation and on failures in both wild-type and NCAM 180 null junctions supported this pathway, and serine phosphorylation of KENESKA was critical. We propose that this pathway is required to replenish synaptic vesicles utilized during high levels of exocytosis by facilitating myosin-driven delivery of synaptic vesicles to active zones or their subsequent exocytosis.  相似文献   

12.
Structural basis of cell-cell adhesion by NCAM   总被引:13,自引:0,他引:13  
The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory and learning. The 1.85 A crystal structure of the two N-terminal extracellular domains of NCAM reported here provides a structural basis for the homophilic interaction. The molecular packing of the two-domain structure reveals a cross shaped antiparallel dimer, and provides fundamental insight into trans-cellular recognition mediated by NCAM.  相似文献   

13.
The neural cell adhesion molecule (NCAM) plays important roles in development of the nervous system and in synaptic plasticity and memory formation in the adult. The present study sought to further investigate the role of NCAM in learning by testing habituation and footshock sensitization learning of the startle response (SR) in NCAM null mutant (NCAM-/-) and wildtype littermate (NCAM+/+) mice. Whereas habituation is a form of non-associative learning, footshock sensitization is induced by rapid contextual fear conditioning. Habituation was tested by repetitive presentation of acoustic and tactile startle stimuli. Although NCAM-/- mice showed differences in sensitivity in both stimulus modalities, habituation learning was intact in NCAM-/- mice, suggesting that NCAM does not play a role in the mechanisms underlying synaptic plasticity in the startle pathway. Footshock sensitization was elicited by presentation of electric footshocks between two series of acoustic stimuli. In contrast to habituation, footshock sensitization learning was attenuated in NCAM-/- mice: the acoustic SR increase after the footshocks was lower in the mutant than in wildtype mice, indicating that NCAM plays an important role in the relevant brain areas, such as amygdala and/or the hippocampus.  相似文献   

14.
The neural cell adhesion molecule NCAM is implicated in different neurodevelopmental processes and in synaptic plasticity in adult brain. The cytoplasmic domain of NCAM interacts with several cytoskeletal proteins and signaling molecules. To identify novel interaction partners of the cytosolic domain of NCAM a protein macroarray has been performed. We identified the ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) as an interaction partner of NCAM140. Ufc1 is one of the enzymes involved in modification of proteins with the ubiquitin-like molecule ubiquitin-fold modifier-1 (Ufm1). We also observed a partial co-localization of NCAM140 with Ufc1 and Ufm1 and increased endocytosis of NCAM140 in the presence of Ufm1 suggesting a possible ufmylation of NCAM140 and a potential novel function of Ufm1 for cell surface proteins.  相似文献   

15.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

16.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM–NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer’s disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.  相似文献   

17.
The dynamics of NCAM expression on the neuronal membranes in dissociated rat hippocampal cell culture during 1–12 days ofin vitro development were studied. Using immunocytochemistry and electron microscopy, quantitative estimation of NCAM re-distribution on the plasma membrane of the neurons in the course of their development and maturation was carried out. By means of computer simulation, localization of NCAM molecules on the membrane of cultured neurons was modeled. It was shown that changes in the level and pattern of NCAM expression are one of the possible mechanisms providing synaptic plasticity and learning and memory processes.  相似文献   

18.
Ushakova  G. A.  Berezin  V. A.  Nerush  P. A. 《Neurophysiology》2000,32(5):321-325
Rats were subjected to a fractionated stress procedure (randomized application of repeated and combined acoustic, light-flash, and nociceptive stimulations, 1 h daily over 1 month). After this session, the NCAM levels in the striatum, mesencephalon, and neocortex increased by 57-74%. Single injections of 1.5 mg/kg haloperidol 40 min to 24 h before sacrificing decreased the NCAM levels in all the above structures practically to control values. Injections of an anticonvulsant, sodium valproate (200 mg/kg), did not change the NCAM levels increased after stressing. We conclude that under stress conditions NCAM are involved in plastic transformations of the synaptic structures, mostly in populations of the excitatory neurons. This is not accompanied by qualitative modifications in the NCAM form composition.  相似文献   

19.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

20.
Kindling of the olfactory bulb using a novel fast protocol (within 24 h) was studied in rats. In target brain regions, the effects of kindling were measured on the concentration of glial fibrillary acidic protein (GFAP) by dot-blot and on the concentrations of neural cell adhesion molecule (NCAM) and the 25 kDa synaptosomal associated protein of the D3 immunoprecipitate (D3(SNAP-25)) by crossed immunoelectrophoresis. Bilateral increases in the levels of GFAP, indicating activation of astrocytes, were detected in primary olfactory cortical projection areas, including the piriform cortex, and also in the basolateral amygdala and dentate gyrus, suggesting that these regions may be functionally altered during the kindling process. In the piriform cortex and dentate gyrus increased NCAM/D3(SNAP-25) ratios found ipsilaterally at seven days after kindling probably reflect an elevated rate of synaptic remodelling. At this time, however, an overall pattern of ipsilateral decreases in the synaptic marker proteins NCAM and D3(SNAP-25) indicated that this remodelling occurred on a background of synaptic degeneration. These results confirm previous studies showing that kindling is associated with synaptic remodelling and neuronal degeneration in the hippocampal formation and extends the area of plasticity to include the piriform cortex which is believed to be central to the kindling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号